• Title/Summary/Keyword: Mission Planning System

Search Result 113, Processing Time 0.031 seconds

A Study on Structured of KOMPSAT-3 Automated Mission Planning System (K3 임무계획 자동화 시스템 구조화 방안 연구)

  • Jang, Yoon-Jeong;Park, Sun-Ju;Chae, Tae-Byung;Ahn, Sang-ill
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.936-939
    • /
    • 2015
  • 현재 우리나라의 대표적인 저궤도실용위성 시리즈인 '다목적실용위성'은 K2, K3, K5, K3A(2호, 3호, 5호, 3A호) 이렇게 총 네 가지로 구성되어 있다. 본 논문에서는 한국항공우주연구원에서 운영하는 다목적실용위성 K3인 일상 임무계획(Mission Planning)의 모듈 자동화 시스템 개발에 대한 내용을 다뤘다. 그중에서도, 일상적으로 반복 수행되는 K3 임무계획 업무 중에서 수동 작업을 자동화하기 위해 객체지향 CBD 개발 방법론을 토대로 C#을 이용한 자동화 시스템을 구조화 시키는 방안에 대해 주력하였다. 그 결과로 자동화 개념 정립을 위한 Feasibility Study를 수행할 것이다. 이를 다목적실용위성 K3 임무계획 중 일상적인 임무계획에 한하여 제한적으로 적용할 수 있을 것으로 기대하며, 이는 나아가 본 선행연구 결과물을 이용하여 K3 임무계획 자동화시스템에 적용에 적극 활용될 수 있을 것이다.

Establishing Application System of KOMPSAT-1

  • Choi, Gi-Hyuk;Lee, Joo-Hee;Paik, Hong-Yul
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.349-356
    • /
    • 1999
  • Korea Multi-Purpose Satellite-l (KOMPSAT-l) has been developed by the Korea Aerospace Research Institute (KARI) with the aid of TRW and will be launched on the December 21, 1999 at the Vandenberg Air Base in CA, U.S. Now, the satellite application group in KARI is preparing for the service with the KOMPSAT-l satellite data. For the purpose of supplying good service to the users, data application planning has to be established before launching satellite. To use satellite data effectively, KARI makes a plan for data policy, data price, mission planning, and commercializing strategy. This study was carried out with the purpose of effective use of satellite data. For this purpose, KARI, first, made 60 user groups to use KOMPSAT-l data for public welfare and research sectors. These user groups include government, public corporations, institutes, and universities. KARI will offer the service to users through online using Internet. Secondly, KARI made a policy for the priority of KOMPSAT-l missions. These are classified by the mission priority, payloads, and operational states etc. Thirdly, KARI will make data policy and data price of KOMPSAT-l based on the basic master plan. Especially, data price will be determined at the KOMPSAT-l committee including Ministry of Science and Technology (MOST). KARI is also trying to commercialize the data with the domestic and foreign companies to expand the use of KOMPSAT-l data in the industries sector. Afterward in this study, KARI will continue the improvement for the effective distribution of KOMPSAT-l data for all users.

NORAD TLE TYPE ORBIT DETERMINATION OF LEO SATELLITES USING GPS NAVIGATION SOLUTIONS

  • Cho, Chang-Hwa;Lee, Byoung-Sun;Lee, Jeong-Sook;Kim, Jae-Hoon;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.3
    • /
    • pp.197-206
    • /
    • 2002
  • NORAD Two Line Elements (TLE) are widely used for the increasing number of small satellite mission operations and analysis. However, due to the irregular periodicity of generation of the NORAD TLE, a new TLE that is independent of NORAD is required. A TLE type Orbit Determination (TLEOD) has been developed for the generation of a new TLE. Thus, the TLEOD system can provide an Antenna Control Unit (ACU) with the orbit determination result in the type of a TLE, which provides a simple interface for the commercialized ACU system. For the TLEOD system, NORAD SGP4 was used to make a new orbit determination system. In addition, a least squares method was implemented for the TLEOD system with the GPS navigation solutions of the KOMPSAT-1. Considering both the Orbit Propagation (OP) difference and the tendency of $B^{*}$ value, the preferable span of the day in the observation data was selected to be 3 days. Through the OD with 3 days observation data, the OP difference was derived and compared with that of Mission Analysis and Planning (MAPS) for the KOMPSAT-1. It has the extent from 2 km after sit days to 4 km after seven days. This is qualified enough for the efficiency of an ACU in image reception and processing center of the KOMPSAT-2.

Consensus-based Autonomous Search Algorithm Applied for Swarm of UAVs (군집 무인기 활용을 위한 합의 기반 자율 탐색 알고리즘)

  • Park, Kuk-Kwon;Kwon, Ho-Jun;Choi, Eunju;Ryoo, Chang-Kyung
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.443-449
    • /
    • 2017
  • Swarm of low-cost UAVs for search mission has benefit in the sense of rapid search compared to use of single high-end UAV. As the number of UAVs forming swarm increases, not only the time for the mission planning increases, but also the system to operate UAVs has excessive burden. This paper addresses a decentralized area search algorithm adequate for multiple UAVs which takes advantages of flexibility, robustness, and simplicity. To down the cost, it is assumed that each UAV has limited ability: close-communication, basic calculation, and limited memory. In close-communication, heath conditions and search information are shared. And collision avoidance and consensus of next search direction are then done. To increase weight on un-searched area and to provide overlapped search, the score function is introduced. Performance and operational characteristics of the proposed search algorithm and mission planning logic are verified via numerical simulations.

Optimized Air Force Flight Scheduling Considering Pilot' s Mission Efficiency (조종사 임무 효율을 고려한 공군 비행 스케줄 최적화)

  • Kwon, Min Seok;Yoon, Chan Il;Kim, Jiyong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.116-122
    • /
    • 2020
  • Human and material resource planning is one representative example of Operations Research. Resource planning is important not only in civilian settings but also in military ones. In the Air Force, flight scheduling is one of the primary issues that must be addressed by the personnel who are connected to flight missions. However, although the topic is of great importance, relatively few studies have attempted to resolve the problem on a scientific basis. Each flight squadron has its own scheduling officers who manually draw up the flight schedules each day. While mistakes may not occur while drafting schedules, officers may experience difficulties in systematically adjusting to them. To increase efficiency in this context, this study proposes a mathematical model based on a binary variable. This model automatically drafts flight schedules considering pilot's mission efficiency. Furthermore, it also recommends that schedules be drawn up monthly and updated weekly, rather than being drafted from scratch each day. This will enable easier control when taking the various relevant factors into account. The model incorporates several parameters, such as matching of the main pilots and co-pilots, turn around time, availability of pilots and aircraft, monthly requirements of each flight mission, and maximum/minimum number of sorties that would be flown per week. The optimal solution to this model demonstrated an average improvement of nearly 47% compared with other feasible solutions.

APPLICABLE TRACKING DATA ARCS FOR NORAD TLE ORBIT DETERMINATION OF THE KOMPSAT-1 SATELLITE USING GPS NAVIGATION SOLUTIONS

  • Lee, Byoung-Sun
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.3
    • /
    • pp.243-248
    • /
    • 2005
  • NORAD Two Line Element (TLE) is very useful to simplify the ground station antenna pointing and mission operations. When a satellite operations facility has the capability to determine NORAD type TLE which is independent of NORAD, it is important to analyze the applicable tracking data arcs for obtaining the best possible orbit. The applicable tracking data arcs for NORAD independent TLE orbit determination of the KOMPSAT-1 using GPS navigation solutions was analyzed for the best possible orbit determination and propagation results. Data spans of the GPS navigation solutions from 1 day to 5 days were used for TLE orbit determination and the results were used as Initial orbit for SGP4 orbit propagation. The operational orbit determination results using KOMPSAT-1 Mission Analysis and Planning System(MAPS) were used as references for the comparisons. The best-matched orbit determination was obtained when 3 days of GPS navigation solutions were used. The resulting 4 days of orbit propagation results were within 2 km of the KOMPSAI-1 MAPS results.

Scheduling North-South Mirror Motion between Two Consecutive Meteorological Images of COMS

  • Lee, Soo-Jeon;Jung, Won-Chan;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.2
    • /
    • pp.26-31
    • /
    • 2008
  • As a multi-mission GEO satellite, Communication, Ocean, and Meteorological Satellite (COMS) is scheduled to be launched in the year 2009. COMS has three different payloads: Ka-band communication payload, Geostationary Ocean Color Imager (GOCI) and Meteorological Imager (MI). Among the three payloads, MI and GOCI have several conflict relationships; one of them is that if MI mirror moves vertically larger than 4 Line Of Sight (LOS) angle while GOCI is imaging, image quality of GOCI becomes degraded. In this paper, MI scheduling algorithm to prevent GOCI's image quality degradation will be presented.

  • PDF

Measure of Effectiveness Analysis of Passive SONAR System for Detection (수동소나시스템에서 탐지효과도 분석)

  • Cho, Jung-Hong;Kim, Jea-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.272-287
    • /
    • 2012
  • The optimal use of sonar systems for detection is a practical problem in a given ocean environment. In order to quantify the mission achievability in general, measure of effectiveness(MOE) is defined for specific missions. In this paper, using the specific MOE for detection, which is represented as cumulative detection probability(CDP), an integrated software package named as Optimal Acoustic Search Path Planning(OASPP) is developed. For a given ocean environment and sonar systems, the discrete observations for detection probability(PD) are used to calculate CDP incorporating sonar and environmental parameters. Also, counter-detection probability is considered for vulnerability analysis for a given scenario. Through modeling and simulation for a simple case for which an intuitive solution is known, the developed code is verified.

Genetic algorithm-based scheduling for ground support of multiple satellites and antennae considering operation modes

  • Lee, Junghyun;Kim, Haedong;Chung, Hyun;Ko, Kwanghee
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.89-100
    • /
    • 2016
  • Given the unpredictability of the space environment, satellite communications are manually performed by exchanging telecommands and telemetry. Ground support for orbiting satellites is given only during limited periods of ground antenna visibility, which can result in conflicts when multiple satellites are present. This problem can be regarded as a scheduling problem of allocating antenna support (task) to limited visibility (resource). To mitigate unforeseen errors and costs associated with manual scheduling and mission planning, we propose a novel method based on a genetic algorithm to solve the ground support problem of multiple satellites and antennae with visibility conflicts. Numerous scheduling parameters, including user priority, emergency, profit, contact interval, support time, remaining resource, are considered to provide maximum benefit to users and real applications. The modeling and formulae are developed in accordance with the characteristics of satellite communication. To validate the proposed algorithm, 20 satellites and 3 ground antennae in the Korean peninsula are assumed and modeled using the satellite tool kit (STK). The proposed algorithm is applied to two operation modes: (i) telemetry, tracking, and command and (ii) payload. The results of the present study show near-optimal scheduling in both operation modes and demonstrate the applicability of the proposed algorithm to actual mission control systems.

A Graphical User Interface Design for Surveillance and Security Robot (감시경계 로봇의 그래픽 사용자 인터페이스 설계)

  • Choi, Duck-Kyu;Lee, Chun-Woo;Lee, Choonjoo
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.1
    • /
    • pp.24-32
    • /
    • 2015
  • This paper introduces a graphical user interface design that is aimed to apply to the surveillance and security robot, which is the pilot program for the army unmanned light combat vehicle. It is essential to consider the activities of robot users under the changing security environment in order to design the efficient graphical user interface between user and robot to accomplish the designated mission. The proposed design approach firstly identifies the user activities to accomplish the mission in the standardized scenarios of military surveillance and security operation and then develops the hierarchy of the interface elements that are required to execute the tasks in the surveillance and security scenarios. The developed graphical user interface includes input control component, navigation component, information display component, and accordion and verified by the potential users from the various skilled levels with the military background. The assessment said that the newly developed user interface includes all the critical elements to execute the mission and is simpler and more intuitive compared to the legacy interface design that was more focused on the technical and functional information and informative to the system developing engineers rather than field users.