• 제목/요약/키워드: MissingData

검색결과 1,307건 처리시간 0.025초

Missing Pattern Analysis of the GOCI-I Optical Satellite Image Data

  • Jeon, Ho-Kun;Cho, Hong Yeon
    • Ocean and Polar Research
    • /
    • 제44권2호
    • /
    • pp.179-190
    • /
    • 2022
  • Data missing in optical satellite images caused by natural variations have been a crucial barrier in observing the status of marine surfaces. Although there have been many attempts to fill the gaps of non-observation, there is little research to analyze the ratio of missing grids to overall sea grids and their seasonal patterns. This report introduces the method of quantifying the distribution of missing points and then shows how the missing points have spatial correlation and seasonal trends. Both temporal and spatial integration methods are compared to assess the effectiveness of reducing missing data. The temporal integration shows more outstanding performance than the spatial integration. Moran's I and K-function with statistical hypothesis testing show that missing grids are clustered and there is a non-random distribution from daily integration. The result of the seasonality test for Moran's I through a periodogram shows dependency on full-year, half-year, and quarter-year periods respectively. These analysis results can be used to deduce appropriate integration periods with permissible estimation errors.

불완전한 데이터를 처리하기 위한 데이터 확장기법 (A data extension technique to handle incomplete data)

  • 이종찬
    • 한국융합학회논문지
    • /
    • 제12권2호
    • /
    • pp.7-13
    • /
    • 2021
  • 본 논문은 학습 데이터에 손실값을 포함하고 있는 불완전한 데이터를 위하여 확률을 나타낼 수 있는 형식으로 변환한 후 손실값을 보상하는 알고리즘을 소개한다. 기존에 이러한 데이터 변환을 사용한 방법에서는 손실 변수가 가질 수 있는 균등한 확률로 손실값을 할당하여 불완전한 데이터를 처리하는 것이었다. 이 방법으로 많은 문제에 적용하여 좋은 결과를 얻었으나, 손실 변수에 남아있는 모든 정보를 무시하고 새로운 값을 할당한다는 점에서 정보의 손실이 있다는 지적이 있었다. 이에 반해 새로운 제안 방법은 손실값을 포함하지 않는 완전한 정보만을 잘 알려진 분류 알고리즘(C4.5)에 입력하고 학습하는 중에 결정트리가 구축된다. 그리고 이 결정트리로 부터 손실값에 대한 확률을 구하여 이를 손실 변수의 추정값으로 할당한다. 즉, 불완전한 학습 데이터에서 손실되지 않은 많은 정보들을 사용하여 손실된 일부 정보를 복구하는 것이다.

장기 관측 지하수위 결측자료 보완 (Interpolation of Missing Groundwater-Level Data at the National Groundwater Monitoring Wells)

  • 정상용;심병완;강동환;원종호;김규범
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 추계학술대회
    • /
    • pp.15-22
    • /
    • 2000
  • Long ranged groundwater-level data often have the missing intervals because of the trouble of monitoring systems at the national groundwater monitoring wells. Geostatistical methods are very useful for the supplement of the missing data. Ordinary kriging was applied for the interpolation of the missing groundwater-level data with a smooth sinusoidal variation. Conditional simulation was used for the reproduction of the missing data with high fluctuations. Two geostatistical methods produced the very accurate estimates at the missing intervals and reproduced their original variations. This fact is proved by the cross validation test and graphical method, respectively.

  • PDF

Bioequivalence trial with two generic drugs in 2 × 3 crossover design with missing data

  • Park, Sang-Gue;Kim, Seunghyo;Choi, Ikjoon
    • Communications for Statistical Applications and Methods
    • /
    • 제27권6호
    • /
    • pp.641-647
    • /
    • 2020
  • The 2 × 3 crossover design, a modified version of the 3 × 3 crossover design, is considered to compare the bioavailability of two generic candidates with a reference drug. The 2 × 3 crossover design is more economically favorable due to decrease in the number of sequences, rather than conducting a 3×3 crossover trial or two separate 2 × 2 crossover trials. However, when using a higher-order crossover trial, the risk of drop-outs and withdrawals of subjects increases, so the suitable statistical inferences for missing data is needed. The bioequivalence model of a of 2×3 crossover trial with missing data is defined and the statistical procedures of assessing bioequivalence is proposed. An illustrated example of the 2 × 3 trial with missing data is also presented with discussion.

특성도를 이용한 결측치 대체방법 (Imputation method for missing data based on measure of property)

  • 김형주;김동재
    • 응용통계연구
    • /
    • 제30권3호
    • /
    • pp.463-473
    • /
    • 2017
  • 임상시험에서 어떻게 결측치를 다룰 것인가 하는 것은 큰 문제이다. 주로 주분석에서 사용하는 ITT원칙은 결측치가 어떠한 메커니즘을 따른다는 가정 하에 결측치를 대체 하지만 가정에 대한 타당성이 불확실한 문제가 있다. 즉, 올바른 결측치 대체방법은 매우 중요하다. 본 연구에서는 Kang과 Kim (1997)이 제안한 일치도와 유지도의 개념을 이용하여 새로운 결측치 대체방법을 제안하였다. 또한 실제자료를 이용하여 예제를 제시하고 Monte Carlo 모의실험을 통하여 기존방법과 대체 성능을 비교하였다.

Bayesian Pattern Mixture Model for Longitudinal Binary Data with Nonignorable Missingness

  • Kyoung, Yujung;Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • 제22권6호
    • /
    • pp.589-598
    • /
    • 2015
  • In longitudinal studies missing data are common and require a complicated analysis. There are two popular modeling frameworks, pattern mixture model (PMM) and selection models (SM) to analyze the missing data. We focus on the PMM and we also propose Bayesian pattern mixture models using generalized linear mixed models (GLMMs) for longitudinal binary data. Sensitivity analysis is used under the missing not at random assumption.

Comparative Study on Imputation Procedures in Exponential Regression Model with missing values

  • Park, Young-Sool;Kim, Soon-Kwi
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권2호
    • /
    • pp.143-152
    • /
    • 2003
  • A data set having missing observations is often completed by using imputed values. In this paper, performances and accuracy of five imputation procedures are evaluated when missing values exist only on the response variable in the exponential regression model. Our simulation results show that adjusted exponential regression imputation procedure can be well used to compensate for missing data, in particular, compared to other imputation procedures. An illustrative example using real data is provided.

  • PDF

Two-stage imputation method to handle missing data for categorical response variable

  • Jong-Min Kim;Kee-Jae Lee;Seung-Joo Lee
    • Communications for Statistical Applications and Methods
    • /
    • 제30권6호
    • /
    • pp.577-587
    • /
    • 2023
  • Conventional categorical data imputation techniques, such as mode imputation, often encounter issues related to overestimation. If the variable has too many categories, multinomial logistic regression imputation method may be impossible due to computational limitations. To rectify these limitations, we propose a two-stage imputation method. During the first stage, we utilize the Boruta variable selection method on the complete dataset to identify significant variables for the target categorical variable. Then, in the second stage, we use the important variables for the target categorical variable for logistic regression to impute missing data in binary variables, polytomous regression to impute missing data in categorical variables, and predictive mean matching to impute missing data in quantitative variables. Through analysis of both asymmetric and non-normal simulated and real data, we demonstrate that the two-stage imputation method outperforms imputation methods lacking variable selection, as evidenced by accuracy measures. During the analysis of real survey data, we also demonstrate that our suggested two-stage imputation method surpasses the current imputation approach in terms of accuracy.

Comparing Accuracy of Imputation Methods for Incomplete Categorical Data

  • Shin, Hyung-Won;Sohn, So-Young
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.237-242
    • /
    • 2003
  • Various kinds of estimation methods have been developed for imputation of categorical missing data. They include modal category method, logistic regression, and association rule. In this study, we propose two imputation methods (neural network fusion and voting fusion) that combine the results of individual imputation methods. A Monte-Carlo simulation is used to compare the performance of these methods. Five factors used to simulate the missing data are (1) true model for the data, (2) data size, (3) noise size (4) percentage of missing data, and (5) missing pattern. Overall, neural network fusion performed the best while voting fusion is better than the individual imputation methods, although it was inferior to the neural network fusion. Result of an additional real data analysis confirms the simulation result.

  • PDF

불완전한 반복측정 자료의 보정방법 (Methods for Handling Incomplete Repeated Measures Data)

  • 우해봉;윤인진
    • 한국조사연구학회지:조사연구
    • /
    • 제9권2호
    • /
    • pp.1-27
    • /
    • 2008
  • 사회조사 자료를 활용한 통계분석에 있어서 불완전 자료의 문제는 거의 모든 연구자들이 경험하는 하나의 보편적인 문제이다. 불완전 자료의 문제는 특히 패널조사와 같은 종단적 자료를 활용한 연구에 있어서 중요한 이슈가 된다. 본 연구의 목적은 최근까지 이루어진 불완전 자료에 대한 보정방범을 소개하는 것이다. 특히, 본 연구는 패널자괴에서 발생한 불완전 자료의 처리에 대한 관심이 부족한 점을 고려하여 최근까지 이루어진 보정방법들을 반복측정 패널자료 분석에 적용하는데 초점을 맞춘다. 첫째, 본 연구는 불완전 자료에 대한 적절하지 못한 사후처리는 분석결과에 있어서 유의미한 차이로 이어 수 있음을 시사한다. 특히, 분석결과는 반복측정 자료를 사용하는 연구의 경우 불완전 자료의 발생은 궤적의 초기값보다는 시간의 경과에 따른 궤적의 변화를 적절히 추정하는데 문제를 가질 수 있음을 시사하고 있다. 둘째, 분석결과는 완전제거법이나 평균대체법이 EM, FIML, MICE 방법들에 비해 불완전 자료의 처리효과가 상대적으로 떨어짐을 보여준다. 특히, 완전제거법이나 평균대체법과 같은 방법에 비해 최대우도법이나 다중대체법이 갖는 상대적 우위는 MCAR 가정에 비해 보다 현실적인 가정이라고 할 수 있는 MAR 조건하에서 크게 나타난다. 본 연구의 분석결과는 또한 비록 결측치의 발생기제가 MNAR 상황이라고 하더라도 연구자가 결측치의 발생과 관련된 변수들을 보정과정에서 적절하게 활용하면 편의의 상당부분을 감소시킬 수 있음을 시사한다.

  • PDF