• Title/Summary/Keyword: Missing Data Imputation

Search Result 145, Processing Time 0.024 seconds

A Study on Imputing the Missing Values of Continuous Traffic Counts (상시조사 교통량 자료의 결측 보정에 관한 연구)

  • Lee, Sang Hyup;Shin, Jae Myong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.2009-2019
    • /
    • 2013
  • Traffic volumes are the important basic data which are directly used for transportation network planning, highway design, highway management and so forth. They are collected by two types of collection methods, one of which is the continuous traffic counts and the other is the short duration traffic counts. The continuous traffic counts are conducted for 365 days a year using the permanent traffic counter and the short duration traffic counts are conducted for specific day(s). In case of the continuous traffic counts the missing of data occurs due to breakdown or malfunction of the counter from time to time. Thus, the diverse imputation methods have been developed and applied so far. In this study the applied exponential smoothing method, in which the data from the days before and after the missing day are used, is proposed and compared with other imputation methods. The comparison shows that the applied exponential smoothing method enhances the accuracy of imputation when the coefficient of traffic volume variation is low. In addition, it is verified that the variation of traffic volume at the site is an important factor for the accuracy of imputation. Therefore, it is necessary to apply different imputation methods depending upon site and time to raise the reliability of imputation for missing traffic values.

Imputation of Multiple Missing Values by Normal Mixture Model under Markov Random Field: Application to Imputation of Pixel Values of Color Image (마코프 랜덤 필드 하에서 정규혼합모형에 의한 다중 결측값 대체기법: 색조영상 결측 화소값 대체에 응용)

  • Kim, Seung-Gu
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.6
    • /
    • pp.925-936
    • /
    • 2009
  • There very many approaches to impute missing values in the iid. case. However, it is hardly found the imputation techniques in the Markov random field(MRF) case. In this paper, we show that the imputation under MRF is just to impute by fitting the normal mixture model(NMM) under several practical assumptions. Our multivariate normal mixture model based approaches under MRF is applied to impute the missing pixel values of 3-variate (R, G, B) color image, providing a technique to smooth the imputed values.

A comparison of imputation methods using nonlinear models (비선형 모델을 이용한 결측 대체 방법 비교)

  • Kim, Hyein;Song, Juwon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.4
    • /
    • pp.543-559
    • /
    • 2019
  • Data often include missing values due to various reasons. If the missing data mechanism is not MCAR, analysis based on fully observed cases may an estimation cause bias and decrease the precision of the estimate since partially observed cases are excluded. Especially when data include many variables, missing values cause more serious problems. Many imputation techniques are suggested to overcome this difficulty. However, imputation methods using parametric models may not fit well with real data which do not satisfy model assumptions. In this study, we review imputation methods using nonlinear models such as kernel, resampling, and spline methods which are robust on model assumptions. In addition, we suggest utilizing imputation classes to improve imputation accuracy or adding random errors to correctly estimate the variance of the estimates in nonlinear imputation models. Performances of imputation methods using nonlinear models are compared under various simulated data settings. Simulation results indicate that the performances of imputation methods are different as data settings change. However, imputation based on the kernel regression or the penalized spline performs better in most situations. Utilizing imputation classes or adding random errors improves the performance of imputation methods using nonlinear models.

Development and Application of Imputation Technique Based on NPR for Missing Traffic Data (NPR기반 누락 교통자료 추정기법 개발 및 적용)

  • Jang, Hyeon-Ho;Han, Dong-Hui;Lee, Tae-Gyeong;Lee, Yeong-In;Won, Je-Mu
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.3
    • /
    • pp.61-74
    • /
    • 2010
  • ITS (Intelligent transportation systems) collects real-time traffic data, and accumulates vest historical data. But tremendous historical data has not been managed and employed efficiently. With the introduction of data management systems like ADMS (Archived Data Management System), the potentiality of huge historical data dramatically surfs up. However, traffic data in any data management system includes missing values in nature, and one of major obstacles in applying these data has been the missing data because it makes an entire dataset useless every so often. For these reasons, imputation techniques take a key role in data management systems. To address these limitations, this paper presents a promising imputation technique which could be mounted in data management systems and robustly generates the estimations for missing values included in historical data. The developed model, based on NPR (Non-Parametric Regression) approach, employs various traffic data patterns in historical data and is designated for practical requirements such as the minimization of parameters, computational speed, the imputation of various types of missing data, and multiple imputation. The model was tested under the conditions of various missing data types. The results showed that the model outperforms reported existing approaches in the side of prediction accuracy, and meets the computational speed required to be mounted in traffic data management systems.

A Study on the Imputation for Missing Data in Dual-loop Vehicle Detector System (차량 검지자료 결측 보정처리에 관한 연구 (이력자료 활용방안을 중심으로))

  • Kim, Jeong-Yeon;Lee, Yeong-In;Baek, Seung-Geol;Nam, Gung-Seong
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.27-40
    • /
    • 2006
  • The traffic information is provided, which based on the volume of traffic, speed, occupancy collected through the currently operating Vehicle Detector System(VDS). In addition to the trend in utilization fold of traffic information is increasing gradually with the applied various fields and users. Missing data in Vehicle detector data means series of data transmitted to controller without specific property. The missing data does not have a data property, so excluded at the whole data Process Hence, increasing ratio of missing data in VDS data inflicts unreliable representation of actual traffic situation. This study presented the imputation process due out which applied the methodologies that utilized adjacent stations reference and historical data utilize about missing data. Applied imputation process methodologies to VDS data or SeoHaeAn/Kyongbu Expressway, currently operation VDS, after processes at missing data ratio of an option. Imputation process held presented to per lane-30seconds-period, and morning/afternoon/daily time scope ranges classified, and analyzed an error of imputed data preparing for actual data. The analysis results, an low error occurred relatively in the results of the imputation process way that utilized a historical data compare with adjacent stations reference methods.

A comparison of imputation methods for the consecutive missing temperature data (연속적 결측이 존재하는 기온 자료에 대한 결측복원 기법의 비교)

  • Kim, Hee-Kyung;Kang, In-Kyeong;Lee, Jae-Won;Lee, Yung-Seop
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.3
    • /
    • pp.549-557
    • /
    • 2016
  • Consecutive missing values are likely to occur in long climate data due to system error or defective equipment. Furthermore, it is difficult to impute missing values. However, these complicated problems can be overcame by imputing missing values with reference time series. Reference time series must be composed of similar time series to time series that include missing values. We performed a simulation to compare three missing imputation methods (the adjusted normal ratio method, the regression method and the IDW method) to complete the missing values of time series. A comparison of the three missing imputation methods for the daily mean temperatures at 14 climatological stations indicated that the IDW method was better thanx others at south seaside stations. We also found the regression method was better than others at most stations (except south seaside stations).

Multiple imputation for competing risks survival data via pseudo-observations

  • Han, Seungbong;Andrei, Adin-Cristian;Tsui, Kam-Wah
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.4
    • /
    • pp.385-396
    • /
    • 2018
  • Competing risks are commonly encountered in biomedical research. Regression models for competing risks data can be developed based on data routinely collected in hospitals or general practices. However, these data sets usually contain the covariate missing values. To overcome this problem, multiple imputation is often used to fit regression models under a MAR assumption. Here, we introduce a multivariate imputation in a chained equations algorithm to deal with competing risks survival data. Using pseudo-observations, we make use of the available outcome information by accommodating the competing risk structure. Lastly, we illustrate the practical advantages of our approach using simulations and two data examples from a coronary artery disease data and hepatocellular carcinoma data.

A study on the imputation solution for missing speed data on UTIS by using adaptive k-NN algorithm (적응형 k-NN 기법을 이용한 UTIS 속도정보 결측값 보정처리에 관한 연구)

  • Kim, Eun-Jeong;Bae, Gwang-Soo;Ahn, Gye-Hyeong;Ki, Yong-Kul;Ahn, Yong-Ju
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.3
    • /
    • pp.66-77
    • /
    • 2014
  • UTIS(Urban Traffic Information System) directly collects link travel time in urban area by using probe vehicles. Therefore it can estimate more accurate link travel speed compared to other traffic detection systems. However, UTIS includes some missing data caused by the lack of probe vehicles and RSEs on road network, system failures, and other factors. In this study, we suggest a new model, based on k-NN algorithm, for imputing missing data to provide more accurate travel time information. New imputation model is an adaptive k-NN which can flexibly adjust the number of nearest neighbors(NN) depending on the distribution of candidate objects. The evaluation result indicates that the new model successfully imputed missing speed data and significantly reduced the imputation error as compared with other models(ARIMA and etc). We have a plan to use the new imputation model improving traffic information service by applying UTIS Central Traffic Information Center.

Imputation method for missing data based on clustering and measure of property (군집화 및 특성도를 이용한 결측치 대체 방법)

  • Kim, Sunghyun;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.1
    • /
    • pp.29-40
    • /
    • 2018
  • There are various reasons for missing values when collecting data. Missing values have some influence on the analysis and results; consequently, various methods of processing missing values have been studied to solve the problem. It is thought that the later point of view may be affected by the initial time point value in the repeated measurement data. However, in the existing method, there was no method for the imputation of missing values using this concept. Therefore, we proposed a new missing value imputation method in this study using clustering in initial time point of the repeated measurement data and the measure of property proposed by Kim and Kim (The Korean Communications in Statistics, 30, 463-473, 2017). We also applied the Monte Carlo simulations to compare the performance of the established method and suggested methods in repeated measurement data.

Survival Analysis of Gastric Cancer Patients with Incomplete Data

  • Moghimbeigi, Abbas;Tapak, Lily;Roshanaei, Ghodaratolla;Mahjub, Hossein
    • Journal of Gastric Cancer
    • /
    • v.14 no.4
    • /
    • pp.259-265
    • /
    • 2014
  • Purpose: Survival analysis of gastric cancer patients requires knowledge about factors that affect survival time. This paper attempted to analyze the survival of patients with incomplete registered data by using imputation methods. Materials and Methods: Three missing data imputation methods, including regression, expectation maximization algorithm, and multiple imputation (MI) using Monte Carlo Markov Chain methods, were applied to the data of cancer patients referred to the cancer institute at Imam Khomeini Hospital in Tehran in 2003 to 2008. The data included demographic variables, survival times, and censored variable of 471 patients with gastric cancer. After using imputation methods to account for missing covariate data, the data were analyzed using a Cox regression model and the results were compared. Results: The mean patient survival time after diagnosis was $49.1{\pm}4.4$ months. In the complete case analysis, which used information from 100 of the 471 patients, very wide and uninformative confidence intervals were obtained for the chemotherapy and surgery hazard ratios (HRs). However, after imputation, the maximum confidence interval widths for the chemotherapy and surgery HRs were 8.470 and 0.806, respectively. The minimum width corresponded with MI. Furthermore, the minimum Bayesian and Akaike information criteria values correlated with MI (-821.236 and -827.866, respectively). Conclusions: Missing value imputation increased the estimate precision and accuracy. In addition, MI yielded better results when compared with the expectation maximization algorithm and regression simple imputation methods.