• Title/Summary/Keyword: Misfire Condition

Search Result 21, Processing Time 0.027 seconds

The Misfire Detection and Intensity Interpretation using Breakdown Voltage Characteristics (브레이크다운전압 특성을 이용한 엔진실화의 검출 및 강도해석)

  • 고용수;박재근;조민석;황재원;채재우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.42-48
    • /
    • 1999
  • Engine misfire causes of the negative effect on exhaust emission such as HC, CO, and NOX . Moreover, it causes damage to the three-way-catalyst(TWC) system permanently. The crankshaft velocity fluctuation(CVF) method has been applied for the real cars as misfire detection system usually, which utilizes the crank angle sensor input to calculate the variation of the crankshaft rotational speed. But this approach has the limit due to the fact that three could be problem under certain engine condition like as deceleration or high speed condition . Therefore the development of new methods are requested today. This study introduced the new method of misfire detection using breakdown voltage(BDV) characteristics between spark plug electrouds.

  • PDF

Misfire Detection by Using the Crankshaft Speed Fluctuation(1) (크랭크축 각속도의 변동을 이용한 실화 판정(1))

  • 배상수;임병진;김세웅;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.23-31
    • /
    • 1996
  • The crankshaft speed fluctuation was measured every crank angle. In order to detect the misfire, the engine and the dynamometer were considered as a single- degree of freedom system. From this modeling, the detection criteria were derived and examined by the engine test. By this method the single misfire or multiple misfires can be detected. Even on the condition of low load and higher speed than 3000rpm, where it was difficult through the other methods, misfire detection was carried out steadily. From this results, the method proposed by this paper proved reasonable.

  • PDF

The Effects of Engine's Misfiring Condition on the Dynamic Behaviour of Resilient Mounting Systems (엔진의 착화실패가 탄성지지계의 동적거동에 미치는 영향)

  • 장민오;손석훈;김의간;김의간
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.503-511
    • /
    • 1996
  • There is a tendency of using the resilient mounting system to control the structure born noise transimitted from a engine of which weight is comparatively light and of which speed is comparatively high. According to recent reports, the resilient mounting system is applied to control the vibration of a engine running up to 300 - 400 R.P.M.. Furthermore, the resilient system is also used to the ships such as marine exploring ships, fishing boats, and military vessels. It is not desirous to apply the results for the resilient mounting systems of automobile engines to the controls of the vibrations of marine engines. Marine engines are worked under the idle speed in port and are operated up to the maximum contineous revolution at sea(running up condition). And marine engines are usually worked in inevitable conditions such as a misfire and a cut-off cylinder operating condition. Concerning the above running conditions, a resilient mounting system should be designed in the case of marine engines. In this paper, we studied the effect of engine's misfire on the resilient mounting systems. And the influences of design parameters, such as dynamic characteristics and fitting angles of resilient rubber mountings, were also investigated respectively on the single and double resilient mounting systems.

  • PDF

The Response of a Wide-Range Oxygen Sensor to the Flow of Misfired Gas and Its Application for the Misfire Detection (실화가스 흐름에 대한 광역 산소센서의 응답특성 및 이를 이용한 실화감지)

  • 정영교;최상민;배충식;명차리
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.41-49
    • /
    • 2000
  • To understand the signal fluctuation of a wide-range oxygen sensor installed at the exhaust confluence point, when a misfiring is triggered in a cylinder, the steady state and the transient response characteristics of the sensor to the flow of the misfired gas were investigated quantitatively. It was recognized that the steady state output voltage of the sensor increased higher when it contacted the misfired gas even though the fueling condition was the same as the normal combustion case and this characteristic enabled the application of the wide-range oxygen sensor for the misfire detection. The transient response was compared at different engine speeds and it was found that the response speed increased with the engine speed. The signal fluctuation was also estimated quantitatively, using these steady state and transient response of the sensor, and the estimated signal showed satisfactory correlation with the measurements.

  • PDF

A study on the engine performance in a multiple spark ignition engine (다회수 스파크 점화기관의 기관성능에 관한 연구)

  • 이성열;한병호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.66-74
    • /
    • 1988
  • The ignition quality of ignition system is influenced by spark energy, discharge pattern of spark energy and spark duration. In this paper, the characteristics of multiple spark ignition system have been investigated for various number of spark and spark interval. The results, which were compared with those obtained with a standard single spark ignition, show that engine output is increased, and lean misfire limit is extended with the multiple spark ignition system. The most effective number of spark at the most effective spark interval that are determined by engine performance test, were 6 times spark at 0.02ms spark interval. For the above condition of spark, engine torque was increased about 20% comparing with conventional ignition system and lean misfire limit was extended to air-fuel ratio 22.5:1. This study researched the rate of heat release and quantity of heat release influenced by a condition of spark on the mass burned in order to investigate the relationship between the rate of mass burned and number of spark times.

  • PDF

Experimental Study on Axial Stratification Process and Its Effects (I) - Stratification in Engine -

  • Ohm, In-Yong;Park, Chan-Jun
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1457-1469
    • /
    • 2002
  • This paper is the first of several companion papers, which investigate axial stratification process and its effects in an Sl engine. The axial stratification is very sophisticate phenomenon, which results from combination of fuel injection, port and in-cylinder flow and mixing. Because of the inherent unsteady condition in the reciprocating engine, it Is impossible to understand the mechanism through the analytical method. In this paper, the ports were characterized by swir and tumble number in steady flow bench test. After this, lean misfire limit of the engines, which had different port characteristic, were investigated as a function of swirl ratio and injection timing for confirming the existence of stratification. In addition, gas fuel was used for verifying whether this phenomenon depends on bulk air motion of cylinder or on evaporation of fuel. High-speed gas sampling and analysis was also performed to estimate stratification charging effect. The results show that the AFR at the spark plug and LML are very closely related and the AFR is the results of bulk air motion.

Visualization of Initial Flame Development in an SI Engine (스파크 점화 엔진에서 초기화염 발달의 가시화)

  • Ohm Inyong
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.45-51
    • /
    • 2004
  • Initial flame development and propagation were visualized under different fuel injection timings to relate the initial flame development to the engine stability in a port injection SI engine. Experiments were performed in an optical single cylinder engine modified from a production engine and images were captured through the quartz window mounted in the piston by an intensified CCD camera. Stratification state was controlled by varying injection timing. Under each injection condition, the flame images were captured at the pre-set crank angles. These were averaged and processed to characterize the flame. The flame stability was estimated by the weighted average of flame area, luminosity, and standard deviation of flame area. Results show that stratification state according to injection timing did not affect on the direction of flame propagation. The flame development and the initial flame stability are strongly dependent on the stratified conditions and the initial flame stability governs the engine stability and lean misfire limit.

  • PDF

Effect of Intake Flow Control Method on Part Load Performance in SI Engine(2) - EGR Characteristics and Comparison of Dilution Method (스파크점화기관에서 흡기제어 방식이 부분부하 성능에 미치는 영향(2) - EGR 특성과 희석 방법의 비교)

  • Kang, Min Gyun;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.121-130
    • /
    • 2014
  • This paper is the second investigation on the effects of intake flow control methods on the part load performance in a spark ignition engine. In the previous work, two control methods, port throttling and masking, were compared with respect to lean misfire limit, fuel consumption and emissions. In this work, the effects of these two methods on EGR characteristics were studied and simultaneously the differences between EGR and lean combustion as a dilution method were investigated. The results show that EGR limit is expanded up to 23% and 3 ~ 5% improvement in the fuel consumption are achieved around 8 ~ 13% rates by the flow controls comparing with 10% limit and 1.5% reduction around 3% rate of non-control case. The masking method is more effective on the limit expansion than throttling as like as lean misfire limit; however there is no substantial difference in fuel consumptions improvement regardless the control methods except high load condition. Also it is observed that there exist critical EGR rates around which the combustion performance and NOx formation change remarkably and these rates generally coincide with optimum rates for the fuel consumption. In addition, dilution with fresh air is much more advantageous than that of the exhaust gas from the view point of dilution limit and fuel consumption, while utilization of the exhaust gas is more effective on NOx reduction in spite of considerably small dilution compared with the use of fresh air. Finally, the improvement of fuel consumption by massive EGR is highly dependent on the EGR limit at which the engine runs stably, therefore the stratified combustion technique might be a best solution for this purpose.

Investigation on the Injection Timing and Double Ignition Method for Heavy-duty LPG SI Lean Burn Engine (액상분사식 대형 LPG 희박연소엔진의 분사시기 및 이점점화에 관한 연구)

  • 김창업;오승묵;강건용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.92-98
    • /
    • 2003
  • An LPG engine for heavy-duty vehicles has been developed using liquid phase LPG injection (hereafter LPLi) system which has regarded as one of the next generation LPG fuel supply systems. In this wort to investigate the lean bum characteristics of heavy-duty LPLi engine, various injection timing (SOI, start of injection) and double ignition method were tested. The results showed that lean misfire limit of LPLi engine could be extended. by 0.2 $\lambda$ value, using the optimal SOI timing in LPLi system. Double ignition method test was carried out by installing the second spark plug and modified ignition circuit to ignite two spark plugs simultaneously. Double ignition resulted in the stable combustion under ultra lean bum condition, below $\lambda=1.7$, and extension of lean misfire limit compare to ordinary case. Therefore, LPLi engine with optimal SOI and double ignition method could be normally operated at around $\lambda=1.9$ and showed higher engine performance.

EFFECT OF FUEL STRATIFICATION ON INITIAL FLAME DEVELOPMENT: PART 1-WITHOUT SWIRL

  • Ohm, I.Y.;Park, C.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.519-526
    • /
    • 2006
  • For investigating the effect of fuel stratification on flame propagation, initial flame development and propagation were visualized under different axially stratified states in a port injection SI engine. Stratification was controlled by the combination of the port swirl ratio and injection timing. Experiments were performed in an optical single cylinder engine modified from a production engine and images were captured through the quartz window mounted in the piston by an intensified CCD camera. Firstly in this paper, the characteristics under no port-generated swirl condition, i.e. normal conventional case was studied. Under various stratified conditions, flame images were captured at the pre-set crank angles. These were averaged and processed to characterize the flames propagation. The flame stability was estimated by the weighted average of flame area and luminosity. The stability was also evaluated through the standard deviation of flame area and propagation distance, and mean absolute deviation of propagating direction. Results show that stratification state according to injection timing do not affect on the direction of flame propagation. The flame development and the initial flame stability are strongly dependent on the stratified conditions and the initial flame stability is closely related to the engine stability and lean misfire limit.