• Title/Summary/Keyword: Mining tool

Search Result 288, Processing Time 0.038 seconds

Dectection of Insurance Fraud using Visualization Data Mining Tool (Visualization Data Mining Tool을 활용한 보험사기 적발)

  • Sung, Tae-Kyung
    • Information Systems Review
    • /
    • v.5 no.1
    • /
    • pp.49-60
    • /
    • 2003
  • The purpose of this study is to empirically and practically verify the applicability of visualization data mining tool in detecting real-word insurance frauds that are now emerged as one of the most serious problems socially and economically. For the verification, Analyst's Notebook by i2, which has been known as the most effective visualization data mining tool, was adopted. With Analyst's Notebook, fraud-probable insurance transactions from a very large insurance claims are selected and then substantiation for insurance frauds are attempted. The results show that Analyst's Notebook not only detects insurance fraud transactions from a vast number of insurance claims, but is also able to pinpoint organized crime group by associating one fraud transaction to another fraud transaction. Therefore, it is safe to conclude that visualization data mining is very effective in detecting false transactions and crime behaviors including insurance fraud.

A Data Mining Tool for Massive Trajectory Data (대규모 궤적 데이타를 위한 데이타 마이닝 툴)

  • Lee, Jae-Gil
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.3
    • /
    • pp.145-153
    • /
    • 2009
  • Trajectory data are ubiquitous in the real world. Recent progress on satellite, sensor, RFID, video, and wireless technologies has made it possible to systematically track object movements and collect huge amounts of trajectory data. Accordingly, there is an ever-increasing interest in performing data analysis over trajectory data. In this paper, we develop a data mining tool for massive trajectory data. This mining tool supports three operations, clustering, classification, and outlier detection, which are the most widely used ones. Trajectory clustering discovers common movement patterns, trajectory classification predicts the class labels of moving objects based on their trajectories, and trajectory outlier detection finds trajectories that are grossly different from or inconsistent with the remaining set of trajectories. The primary advantage of the mining tool is to take advantage of the information of partial trajectories in the process of data mining. The effectiveness of the mining tool is shown using various real trajectory data sets. We believe that we have provided practical software for trajectory data mining which can be used in many real applications.

A Study on the Data Mining Preprocessing Tool For Efficient Database Marketing (효율적인 데이터베이스 마케팅을 위한 데이터마이닝 전처리도구에 관한 연구)

  • Lee, Jun-Seok
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.257-264
    • /
    • 2014
  • This paper is to construction of the data mining preprocessing tool for efficient database marketing. We compare and evaluate the often used data mining tools based on the access method to local and remote databases, and on the exchange of information resources between different computers. The evaluated preprocessing of data mining tools are Answer Tree, Climentine, Enterprise Miner, Kensington, and Weka. We propose a design principle for an efficient system for data preprocessing for data mining on the distributed networks. This system is based on Java technology including EJB(Enterprise Java Beans) and XML(eXtensible Markup Language).

A Design and Implementation of the Scenario-based Data Mining Tool named XM-T7D1/Miner (시나리오 기반의 데이터 마이닝 도구 XM-TDDl/Miner 설계 및 구현)

  • 이창호;이남근;이승희;이병엽;김주용
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.307-314
    • /
    • 2000
  • 정보기술이 발달하면서 자료의 흔적들이 체계화된 데이터베이스에 저장이 되고, 더불어 데이터베이스의 규모는 점점 커지고 있다. 데이터 마이닝은 이런 방대한 자료의 분석을 통해, 그 속에 숨어있는 의미를 찾는 과점이라고 될 수 있다. 본 논문에서는 대우정보시스템(주)서 개발된 사용자지향 데이터 마이닝 도구인 XM-Tool/Miner의 개발을 대상으로 하고 있다. 개발된 XM-Tool/Miner은 문제 중심적 마이닝 도구를 목표로 하였으며, 대표적인 마이닝 알고리즘을 적용하였고, 또한 사용의 편이성에 초점을 맞추었다. 더 나아가 데이터 마이닝 기법뿐만 아니라 데이터의 샘플링과 성능향상을 통하여 방대한 데이터로부터 다양한 지식탐사가 가능해지고, 발견된 규칙 또는 지식의 유용성 측정을 통하여 업무 분야의 특성에 따라 효과적으로 반영되며 의사 결정 및 CRM마케팅, 동향분석 및 예측 등에 유용한 정보를 추출하는 도구로 사용할 수 있을 것이다.

  • PDF

Design and implementation of data mining tool using PHP and WEKA (피에이치피와 웨카를 이용한 데이터마이닝 도구의 설계 및 구현)

  • You, Young-Jae;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.425-433
    • /
    • 2009
  • Data mining is the method to find useful information for large amounts of data in database. It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. We need a data mining tool to explore a lot of information. There are many data mining tools or solutions; E-Miner, Clementine, WEKA, and R. Almost of them are were focused on diversity and general purpose, and they are not useful for laymen. In this paper we design and implement a web-based data mining tool using PHP and WEKA. This system is easy to interpret results and so general users are able to handle. We implement Apriori algorithm of association rule, K-means algorithm of cluster analysis, and J48 algorithm of decision tree.

  • PDF

An Application of Data-Mining Tool in Fraud Pension Payment Prediction (데이터마이닝을 이용한 국민연금 부정수급 예측모형 개발 - 손해배상금 불성실 신고를 대상으로 -)

  • Cha, Kyung-Yup
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • This study tested the applicability of a Data mining tool in the analysis of massive National Pension data for the purpose of developing fraud pension payment prediction model. This study is identified significant variables for fraud pension payment through the statistical analysis process and developed prediction models using data mining methodology.

A Quality Data Mining System in TFT-LCD Industry (TFT-LCD 산업에서의 품질마이닝 시스템)

  • Lee, Hyun-Woo;Nam, Ho-Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.1
    • /
    • pp.13-19
    • /
    • 2006
  • Data mining is a useful tool for analyzing data from different perspectives and for summarizing them into useful information. Recently, the data mining methods are applied to solving quality problems of the manufacturing processes. This paper discusses the problems of construction of a quality mining system, which is based on the various data mining methods. The quality mining system includes recipe optimization, significant difference test, finding critical processes, forecasting the yield. The contents and system of this paper are focused on the TFT-LCD manufacturing process. We also provide some illustrative field examples of the quality mining system.

Improving Process Mining with Trace Clustering (자취 군집화를 통한 프로세스 마이닝의 성능 개선)

  • Song, Min-Seok;Gunther, C.W.;van der Aalst, W.M.P.;Jung, Jae-Yoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.4
    • /
    • pp.460-469
    • /
    • 2008
  • Process mining aims at mining valuable information from process execution results (called "event logs"). Even though process mining techniques have proven to be a valuable tool, the mining results from real process logs are usually too complex to interpret. The main cause that leads to complex models is the diversity of process logs. To address this issue, this paper proposes a trace clustering approach that splits a process log into homogeneous subsets and applies existing process mining techniques to each subset. Based on log profiles from a process log, the approach uses existing clustering techniques to derive clusters. Our approach are implemented in ProM framework. To illustrate this, a real-life case study is also presented.

Development of Data Mining Tool Using S-PLUS and StatServer (S-PLUS와 StatServer를 이용한 Data Mining 도구 개발)

  • 정인석;이재준
    • Journal of Intelligence and Information Systems
    • /
    • v.4 no.2
    • /
    • pp.129-139
    • /
    • 1998
  • 통계 software에는 data mining에 필요한 다양한 모형과 함수들이 제공되고 있어 이를 이용한 data mining 도구가 소개되고 있다. 본 논문에서는 data mining을 수행하는데 효과적인 환경을 제공하는 S-Plus로 data mining 기법들을 구현하거나 재구성하였으며, StatServer를 이용하여 대용량의 data base를 직접 관리할 수 있게 하고, S-PLUS의 분석기능을 Internet을 통하여 사용할 수 있게 하여 원거리에서 data mining작업을 수행될 수 있도록 구성하였다. 또한 분석자는 찾아낸 모형을 복잡한 프로그래밍 작업 없이 새로운 웹 페이지를 만들 수 있으며, 이를 통해 운영계의 사용자가 최적 모형이 제시하는 결과를 실제 업무에 즉시 이용할 수 있도록 하였다.

  • PDF

TFT-LCD 산업에서의 품질마이닝 시스템

  • Lee, Hyeon-U;Nam, Ho-Su;Choe, Gyeong-Ho
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2006.04a
    • /
    • pp.142-148
    • /
    • 2006
  • Data mining is a useful tool for analyzing data from different perspectives and for summarizing them into useful information. Recently, the data mining methods are applied to solving quality problems of the manufacturing processes. This paper discusses the problems of construction of a quality mining system, which is based on the various data mining methods. The quality mining system includes recipe optimization, significant difference test, finding critical processes, forecasting the yield. The contents and system of this paper are focused on the TFT-LCD manufacturing process. We also provide some illustrative field examples of the quality mining system.

  • PDF