• Title/Summary/Keyword: Mining method

Search Result 2,076, Processing Time 0.03 seconds

SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering (협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템)

  • Joe, Denis Yongmin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.77-110
    • /
    • 2017
  • Recently, the diversification and individualization of consumption patterns through the web and mobile devices based on the Internet have been rapid. As this happens, the efficient operation of the offline store, which is a traditional distribution channel, has become more important. In order to raise both the sales and profits of stores, stores need to supply and sell the most attractive products to consumers in a timely manner. However, there is a lack of research on which SKUs, out of many products, can increase sales probability and reduce inventory costs. In particular, if a company sells products through multiple in-store stores across multiple locations, it would be helpful to increase sales and profitability of stores if SKUs appealing to customers are recommended. In this study, the recommender system (recommender system such as collaborative filtering and hybrid filtering), which has been used for personalization recommendation, is suggested by SKU recommendation method of a store unit of a distribution company that handles a homogeneous brand through a plurality of sales stores by country and region. We calculated the similarity of each store by using the purchase data of each store's handling items, filtering the collaboration according to the sales history of each store by each SKU, and finally recommending the individual SKU to the store. In addition, the store is classified into four clusters through PCA (Principal Component Analysis) and cluster analysis (Clustering) using the store profile data. The recommendation system is implemented by the hybrid filtering method that applies the collaborative filtering in each cluster and measured the performance of both methods based on actual sales data. Most of the existing recommendation systems have been studied by recommending items such as movies and music to the users. In practice, industrial applications have also become popular. In the meantime, there has been little research on recommending SKUs for each store by applying these recommendation systems, which have been mainly dealt with in the field of personalization services, to the store units of distributors handling similar brands. If the recommendation method of the existing recommendation methodology was 'the individual field', this study expanded the scope of the store beyond the individual domain through a plurality of sales stores by country and region and dealt with the store unit of the distribution company handling the same brand SKU while suggesting a recommendation method. In addition, if the existing recommendation system is limited to online, it is recommended to apply the data mining technique to develop an algorithm suitable for expanding to the store area rather than expanding the utilization range offline and analyzing based on the existing individual. The significance of the results of this study is that the personalization recommendation algorithm is applied to a plurality of sales outlets handling the same brand. A meaningful result is derived and a concrete methodology that can be constructed and used as a system for actual companies is proposed. It is also meaningful that this is the first attempt to expand the research area of the academic field related to the existing recommendation system, which was focused on the personalization domain, to a sales store of a company handling the same brand. From 05 to 03 in 2014, the number of stores' sales volume of the top 100 SKUs are limited to 52 SKUs by collaborative filtering and the hybrid filtering method SKU recommended. We compared the performance of the two recommendation methods by totaling the sales results. The reason for comparing the two recommendation methods is that the recommendation method of this study is defined as the reference model in which offline collaborative filtering is applied to demonstrate higher performance than the existing recommendation method. The results of this model are compared with the Hybrid filtering method, which is a model that reflects the characteristics of the offline store view. The proposed method showed a higher performance than the existing recommendation method. The proposed method was proved by using actual sales data of large Korean apparel companies. In this study, we propose a method to extend the recommendation system of the individual level to the group level and to efficiently approach it. In addition to the theoretical framework, which is of great value.

A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection (입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구)

  • Lee, Jong-sik;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.147-168
    • /
    • 2017
  • There have been many studies on accurate stock market forecasting in academia for a long time, and now there are also various forecasting models using various techniques. Recently, many attempts have been made to predict the stock index using various machine learning methods including Deep Learning. Although the fundamental analysis and the technical analysis method are used for the analysis of the traditional stock investment transaction, the technical analysis method is more useful for the application of the short-term transaction prediction or statistical and mathematical techniques. Most of the studies that have been conducted using these technical indicators have studied the model of predicting stock prices by binary classification - rising or falling - of stock market fluctuations in the future market (usually next trading day). However, it is also true that this binary classification has many unfavorable aspects in predicting trends, identifying trading signals, or signaling portfolio rebalancing. In this study, we try to predict the stock index by expanding the stock index trend (upward trend, boxed, downward trend) to the multiple classification system in the existing binary index method. In order to solve this multi-classification problem, a technique such as Multinomial Logistic Regression Analysis (MLOGIT), Multiple Discriminant Analysis (MDA) or Artificial Neural Networks (ANN) we propose an optimization model using Genetic Algorithm as a wrapper for improving the performance of this model using Multi-classification Support Vector Machines (MSVM), which has proved to be superior in prediction performance. In particular, the proposed model named GA-MSVM is designed to maximize model performance by optimizing not only the kernel function parameters of MSVM, but also the optimal selection of input variables (feature selection) as well as instance selection. In order to verify the performance of the proposed model, we applied the proposed method to the real data. The results show that the proposed method is more effective than the conventional multivariate SVM, which has been known to show the best prediction performance up to now, as well as existing artificial intelligence / data mining techniques such as MDA, MLOGIT, CBR, and it is confirmed that the prediction performance is better than this. Especially, it has been confirmed that the 'instance selection' plays a very important role in predicting the stock index trend, and it is confirmed that the improvement effect of the model is more important than other factors. To verify the usefulness of GA-MSVM, we applied it to Korea's real KOSPI200 stock index trend forecast. Our research is primarily aimed at predicting trend segments to capture signal acquisition or short-term trend transition points. The experimental data set includes technical indicators such as the price and volatility index (2004 ~ 2017) and macroeconomic data (interest rate, exchange rate, S&P 500, etc.) of KOSPI200 stock index in Korea. Using a variety of statistical methods including one-way ANOVA and stepwise MDA, 15 indicators were selected as candidate independent variables. The dependent variable, trend classification, was classified into three states: 1 (upward trend), 0 (boxed), and -1 (downward trend). 70% of the total data for each class was used for training and the remaining 30% was used for verifying. To verify the performance of the proposed model, several comparative model experiments such as MDA, MLOGIT, CBR, ANN and MSVM were conducted. MSVM has adopted the One-Against-One (OAO) approach, which is known as the most accurate approach among the various MSVM approaches. Although there are some limitations, the final experimental results demonstrate that the proposed model, GA-MSVM, performs at a significantly higher level than all comparative models.

Index-based Searching on Timestamped Event Sequences (타임스탬프를 갖는 이벤트 시퀀스의 인덱스 기반 검색)

  • 박상현;원정임;윤지희;김상욱
    • Journal of KIISE:Databases
    • /
    • v.31 no.5
    • /
    • pp.468-478
    • /
    • 2004
  • It is essential in various application areas of data mining and bioinformatics to effectively retrieve the occurrences of interesting patterns from sequence databases. For example, let's consider a network event management system that records the types and timestamp values of events occurred in a specific network component(ex. router). The typical query to find out the temporal casual relationships among the network events is as fellows: 'Find all occurrences of CiscoDCDLinkUp that are fellowed by MLMStatusUP that are subsequently followed by TCPConnectionClose, under the constraint that the interval between the first two events is not larger than 20 seconds, and the interval between the first and third events is not larger than 40 secondsTCPConnectionClose. This paper proposes an indexing method that enables to efficiently answer such a query. Unlike the previous methods that rely on inefficient sequential scan methods or data structures not easily supported by DBMSs, the proposed method uses a multi-dimensional spatial index, which is proven to be efficient both in storage and search, to find the answers quickly without false dismissals. Given a sliding window W, the input to a multi-dimensional spatial index is a n-dimensional vector whose i-th element is the interval between the first event of W and the first occurrence of the event type Ei in W. Here, n is the number of event types that can be occurred in the system of interest. The problem of‘dimensionality curse’may happen when n is large. Therefore, we use the dimension selection or event type grouping to avoid this problem. The experimental results reveal that our proposed technique can be a few orders of magnitude faster than the sequential scan and ISO-Depth index methods.hods.

Analyzing the Issue Life Cycle by Mapping Inter-Period Issues (기간별 이슈 매핑을 통한 이슈 생명주기 분석 방법론)

  • Lim, Myungsu;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.25-41
    • /
    • 2014
  • Recently, the number of social media users has increased rapidly because of the prevalence of smart devices. As a result, the amount of real-time data has been increasing exponentially, which, in turn, is generating more interest in using such data to create added value. For instance, several attempts are being made to analyze the relevant search keywords that are frequently used on new portal sites and the words that are regularly mentioned on various social media in order to identify social issues. The technique of "topic analysis" is employed in order to identify topics and themes from a large amount of text documents. As one of the most prevalent applications of topic analysis, the technique of issue tracking investigates changes in the social issues that are identified through topic analysis. Currently, traditional issue tracking is conducted by identifying the main topics of documents that cover an entire period at the same time and analyzing the occurrence of each topic by the period of occurrence. However, this traditional issue tracking approach has two limitations. First, when a new period is included, topic analysis must be repeated for all the documents of the entire period, rather than being conducted only on the new documents of the added period. This creates practical limitations in the form of significant time and cost burdens. Therefore, this traditional approach is difficult to apply in most applications that need to perform an analysis on the additional period. Second, the issue is not only generated and terminated constantly, but also one issue can sometimes be distributed into several issues or multiple issues can be integrated into one single issue. In other words, each issue is characterized by a life cycle that consists of the stages of creation, transition (merging and segmentation), and termination. The existing issue tracking methods do not address the connection and effect relationship between these issues. The purpose of this study is to overcome the two limitations of the existing issue tracking method, one being the limitation regarding the analysis method and the other being the limitation involving the lack of consideration of the changeability of the issues. Let us assume that we perform multiple topic analysis for each multiple period. Then it is essential to map issues of different periods in order to trace trend of issues. However, it is not easy to discover connection between issues of different periods because the issues derived for each period mutually contain heterogeneity. In this study, to overcome these limitations without having to analyze the entire period's documents simultaneously, the analysis can be performed independently for each period. In addition, we performed issue mapping to link the identified issues of each period. An integrated approach on each details period was presented, and the issue flow of the entire integrated period was depicted in this study. Thus, as the entire process of the issue life cycle, including the stages of creation, transition (merging and segmentation), and extinction, is identified and examined systematically, the changeability of the issues was analyzed in this study. The proposed methodology is highly efficient in terms of time and cost, as it sufficiently considered the changeability of the issues. Further, the results of this study can be used to adapt the methodology to a practical situation. By applying the proposed methodology to actual Internet news, the potential practical applications of the proposed methodology are analyzed. Consequently, the proposed methodology was able to extend the period of the analysis and it could follow the course of progress of each issue's life cycle. Further, this methodology can facilitate a clearer understanding of complex social phenomena using topic analysis.

Attenuation of High-Frequency P and S Waves in the Crust of Eastern Part of Choongchung Provinces (충청 동부지역 지각의 P, S파 감쇠 분석)

  • Kyung, Jai-Bok;Kim, Kyu-Dong
    • Journal of the Korean earth science society
    • /
    • v.24 no.8
    • /
    • pp.684-690
    • /
    • 2003
  • Recently Choongchung provinces in the central part of South Korea have received increasing attention because of the newly Planned administrative capital construction. In this area, a seismic network of Korea National University of Education has been installed since September 1996, and analyzed Q$_P^{-1}$ and Q$_S^{-1}$ by the extended Coda normalization method based on 60 events recorded by 2 stations of the network. To compensate for insufficient data, we combined the data from 33 events observed at 1 of the stations of the network of Korea Institute of Geology, Mining & Materials. Estimated Q$_P^{-1}$ and Q$_S^{-1}$ showed frequency dependence that decrease from (1.9${\pm}$3.0)${\times}$10$^{-3}$ and (2.4${\pm}$1.4)${\times}$10$^{-3}$ at 3.0 Hz to (5.4${\pm}$1.5)${\times}$10$^{-4}$ and (6.3${\pm}$1.1)${\times}$10$^{-4}$ at 24 Hz, respectively. Using a power law dependent on frequency, the best fit of Q$_P^{-1}$ and Q$_S^{-1}$ are 0.003f$^{-0.62}$ and 0.006f$^{-0.71}$ respectively. These values correspond to those of seismically stable regions, and are slightly less dependent on frequency than those of the southeastern part of Korea due to high Q$^{-1}$ values in high frequencies. Further observations are required in the central part of S. Korea to evaluate the difference of Q$^{-1}$ between central and southeastern parts of S. Korea.

Application of Geophysical Methods to Detection of a Preferred Groundwater Flow Channel at a Pyrite Tailings Dam (황철석 광산 광미댐에서의 지하수흐름 경로탐지를 위한 물리탐사 적용)

  • Hwang, Hak Soo
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.137-142
    • /
    • 1997
  • At the tailings dam of the disused Brukunga pyrite mine in South Australia, reaction of groundwater with the tailings causes the formation and discharge of sulphuric acid. There is a need to improve remediation efforts by decreasing groundwater flow through the tailings dam. Geophysical methods have been investigated to determine whether they can be used to characterise variations in depth to watertable and map preferred groundwater flow paths. Three methods were used: transient electromagnetic (TEM) soundings, direct current (DC) soundings and profiling, and self potential (SP) profiling. The profiling methods were used to map the areal extent of a given response, while soundings was used to determine the variation in response with depth. The results of the geophysical surveys show that the voltages measured with SP profiling are small and it is hard to determine any preferred channels of groundwater flow from SP data alone. Results obtained from TEM and DC soundings, show that the DC method is useful for determining layer boundaries at shallow depths (less than about 10 m), while the TEM method can resolve deeper structures. Joint use of TEM and DC data gives a more complete and accurate geoelectric section. The TEM and DC measurements have enabled accurate determination of depth to groundwater. For soundings centred at piezometers, this depth is consistent with the measured watertable level in the corresponding piezometer. A map of the watertable level produced from all the TEM and DC soundings at the site shows that the shallowest level is at a depth of about 1 m, and occurs at the southeast of the site, while the deepest watertable level (about 17 m) occurs at the northwest part of the site. The results indicate that a possible source of groundwater occurs at the southeast area of the dam, and the aquifer thickness varies between 6 and 13 m. A map of the variation of resistivity of the aquifer has also been produced from the TEM and DC data. This map shows that the least resistive (i.e., most conductive) section of the aquifer occurs in the northeast of the site, while the most resistive part of the aquifer occurs in the southeast. These results are interpreted to indicate a source of fresh (resistive) groundwater in the southeast of the site, with a possible further source of conductive groundwater in the northeast.

  • PDF

Comparative Analysis of Korean and Japanese Textbooks on World Geography: Focused on the Contents of Global Education (한.일 고등학교 세계지리 교과서 내용 비교 분석 -국제이해교육의 관련 내용을 중심으로-)

  • Yang, Won-Taek
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.2
    • /
    • pp.75-92
    • /
    • 1996
  • Geography education is one of the best ways to improve the understanding of other countries. By analyzing Korean and Japanese textbooks on world geography, I tried to find out how well they explain the other country and to set forth guiding principles for geography education. To achieve these aims, weight analysis are used. The major findings in this study can be summarised as follow. The contents of Korean and Japanese geography textbooks were analyzed deviding into 2 major topics, 6 minor topics, and 20 key concepts. (1) By analyzing Korean geography textbook of the 5th curriculum the weight percentages which had been given to each minor topics were found. They are as follow: resource problem(57.7%), human right problem(21.4%), population problem (9.0%), mutual dependence(6.0%), environmental problem(3.3%), international competition(2.6%). (2) By analyzing Korean geography text-book of the 6th curriculum the weight percentages which had been give to each minor topics were found. They are as follow: resource problem(42.7%), human right problem(21.7%), mutual dependence (20.9%), environmental problem(7.7%), population problem(4.6%), international competition(2.4%) (3) By analyzing Japanise geography text-book of 5th curriculum ammendment the weight percentages which had been give to each minor topics were found. They are as follows: resource problem(49.9%) human right problem(21.7%), mutual dependence(15.5%), population problem (7.1%), international competition(6.2%), environmental problem(3.8%) (4) By analyzing Japanise geography textbook of 6th curriculum ammendment the weight percentages which had been give to each minor topics were found. They are as follows human right problem (31.6%), mutual dependence(22.8%), resource problem(20.7%), population problem(12.7%), environmental problem(8.6%), international competition(3.6%). We can see that in the field of dependence Korea and Japan put the similar weight but in the field of common problem they put the fairly different weight. It can be viewed as the difference of curriculum. That is to say Korea used both the systematic method on the basis of unit but Japan used only topical method on the basis of unit. Therefore Korean geography textbook introduce agriculture, forestry, fishery, mining industry and manufacturing industry. Japanese textbook, however gives a detailed account about residents' lives in specific area. For that reason in Korean textbook, resource was stressed, while in Japanese textbook, culture was stressed.

  • PDF

Selective Word Embedding for Sentence Classification by Considering Information Gain and Word Similarity (문장 분류를 위한 정보 이득 및 유사도에 따른 단어 제거와 선택적 단어 임베딩 방안)

  • Lee, Min Seok;Yang, Seok Woo;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.105-122
    • /
    • 2019
  • Dimensionality reduction is one of the methods to handle big data in text mining. For dimensionality reduction, we should consider the density of data, which has a significant influence on the performance of sentence classification. It requires lots of computations for data of higher dimensions. Eventually, it can cause lots of computational cost and overfitting in the model. Thus, the dimension reduction process is necessary to improve the performance of the model. Diverse methods have been proposed from only lessening the noise of data like misspelling or informal text to including semantic and syntactic information. On top of it, the expression and selection of the text features have impacts on the performance of the classifier for sentence classification, which is one of the fields of Natural Language Processing. The common goal of dimension reduction is to find latent space that is representative of raw data from observation space. Existing methods utilize various algorithms for dimensionality reduction, such as feature extraction and feature selection. In addition to these algorithms, word embeddings, learning low-dimensional vector space representations of words, that can capture semantic and syntactic information from data are also utilized. For improving performance, recent studies have suggested methods that the word dictionary is modified according to the positive and negative score of pre-defined words. The basic idea of this study is that similar words have similar vector representations. Once the feature selection algorithm selects the words that are not important, we thought the words that are similar to the selected words also have no impacts on sentence classification. This study proposes two ways to achieve more accurate classification that conduct selective word elimination under specific regulations and construct word embedding based on Word2Vec embedding. To select words having low importance from the text, we use information gain algorithm to measure the importance and cosine similarity to search for similar words. First, we eliminate words that have comparatively low information gain values from the raw text and form word embedding. Second, we select words additionally that are similar to the words that have a low level of information gain values and make word embedding. In the end, these filtered text and word embedding apply to the deep learning models; Convolutional Neural Network and Attention-Based Bidirectional LSTM. This study uses customer reviews on Kindle in Amazon.com, IMDB, and Yelp as datasets, and classify each data using the deep learning models. The reviews got more than five helpful votes, and the ratio of helpful votes was over 70% classified as helpful reviews. Also, Yelp only shows the number of helpful votes. We extracted 100,000 reviews which got more than five helpful votes using a random sampling method among 750,000 reviews. The minimal preprocessing was executed to each dataset, such as removing numbers and special characters from text data. To evaluate the proposed methods, we compared the performances of Word2Vec and GloVe word embeddings, which used all the words. We showed that one of the proposed methods is better than the embeddings with all the words. By removing unimportant words, we can get better performance. However, if we removed too many words, it showed that the performance was lowered. For future research, it is required to consider diverse ways of preprocessing and the in-depth analysis for the co-occurrence of words to measure similarity values among words. Also, we only applied the proposed method with Word2Vec. Other embedding methods such as GloVe, fastText, ELMo can be applied with the proposed methods, and it is possible to identify the possible combinations between word embedding methods and elimination methods.

A Study of Factors Associated with Software Developers Job Turnover (데이터마이닝을 활용한 소프트웨어 개발인력의 업무 지속수행의도 결정요인 분석)

  • Jeon, In-Ho;Park, Sun W.;Park, Yoon-Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.191-204
    • /
    • 2015
  • According to the '2013 Performance Assessment Report on the Financial Program' from the National Assembly Budget Office, the unfilled recruitment ratio of Software(SW) Developers in South Korea was 25% in the 2012 fiscal year. Moreover, the unfilled recruitment ratio of highly-qualified SW developers reaches almost 80%. This phenomenon is intensified in small and medium enterprises consisting of less than 300 employees. Young job-seekers in South Korea are increasingly avoiding becoming a SW developer and even the current SW developers want to change careers, which hinders the national development of IT industries. The Korean government has recently realized the problem and implemented policies to foster young SW developers. Due to this effort, it has become easier to find young SW developers at the beginning-level. However, it is still hard to recruit highly-qualified SW developers for many IT companies. This is because in order to become a SW developing expert, having a long term experiences are important. Thus, improving job continuity intentions of current SW developers is more important than fostering new SW developers. Therefore, this study surveyed the job continuity intentions of SW developers and analyzed the factors associated with them. As a method, we carried out a survey from September 2014 to October 2014, which was targeted on 130 SW developers who were working in IT industries in South Korea. We gathered the demographic information and characteristics of the respondents, work environments of a SW industry, and social positions for SW developers. Afterward, a regression analysis and a decision tree method were performed to analyze the data. These two methods are widely used data mining techniques, which have explanation ability and are mutually complementary. We first performed a linear regression method to find the important factors assaociated with a job continuity intension of SW developers. The result showed that an 'expected age' to work as a SW developer were the most significant factor associated with the job continuity intention. We supposed that the major cause of this phenomenon is the structural problem of IT industries in South Korea, which requires SW developers to change the work field from developing area to management as they are promoted. Also, a 'motivation' to become a SW developer and a 'personality (introverted tendency)' of a SW developer are highly importantly factors associated with the job continuity intention. Next, the decision tree method was performed to extract the characteristics of highly motivated developers and the low motivated ones. We used well-known C4.5 algorithm for decision tree analysis. The results showed that 'motivation', 'personality', and 'expected age' were also important factors influencing the job continuity intentions, which was similar to the results of the regression analysis. In addition to that, the 'ability to learn' new technology was a crucial factor for the decision rules of job continuity. In other words, a person with high ability to learn new technology tends to work as a SW developer for a longer period of time. The decision rule also showed that a 'social position' of SW developers and a 'prospect' of SW industry were minor factors influencing job continuity intensions. On the other hand, 'type of an employment (regular position/ non-regular position)' and 'type of company (ordering company/ service providing company)' did not affect the job continuity intension in both methods. In this research, we demonstrated the job continuity intentions of SW developers, who were actually working at IT companies in South Korea, and we analyzed the factors associated with them. These results can be used for human resource management in many IT companies when recruiting or fostering highly-qualified SW experts. It can also help to build SW developer fostering policy and to solve the problem of unfilled recruitment of SW Developers in South Korea.

An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis (R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템)

  • Lee, Choongseok;Lee, Suk Joo;Choi, Byounggu
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.79-96
    • /
    • 2012
  • As the pace of competition dramatically accelerates and the complexity of change grows, a variety of research have been conducted to improve firms' short-term performance and to enhance firms' long-term survival. In particular, researchers and practitioners have paid their attention to identify promising technologies that lead competitive advantage to a firm. Discovery of promising technology depends on how a firm evaluates the value of technologies, thus many evaluating methods have been proposed. Experts' opinion based approaches have been widely accepted to predict the value of technologies. Whereas this approach provides in-depth analysis and ensures validity of analysis results, it is usually cost-and time-ineffective and is limited to qualitative evaluation. Considerable studies attempt to forecast the value of technology by using patent information to overcome the limitation of experts' opinion based approach. Patent based technology evaluation has served as a valuable assessment approach of the technological forecasting because it contains a full and practical description of technology with uniform structure. Furthermore, it provides information that is not divulged in any other sources. Although patent information based approach has contributed to our understanding of prediction of promising technologies, it has some limitations because prediction has been made based on the past patent information, and the interpretations of patent analyses are not consistent. In order to fill this gap, this study proposes a technology forecasting methodology by integrating patent information approach and artificial intelligence method. The methodology consists of three modules : evaluation of technologies promising, implementation of technologies value prediction model, and recommendation of promising technologies. In the first module, technologies promising is evaluated from three different and complementary dimensions; impact, fusion, and diffusion perspectives. The impact of technologies refers to their influence on future technologies development and improvement, and is also clearly associated with their monetary value. The fusion of technologies denotes the extent to which a technology fuses different technologies, and represents the breadth of search underlying the technology. The fusion of technologies can be calculated based on technology or patent, thus this study measures two types of fusion index; fusion index per technology and fusion index per patent. Finally, the diffusion of technologies denotes their degree of applicability across scientific and technological fields. In the same vein, diffusion index per technology and diffusion index per patent are considered respectively. In the second module, technologies value prediction model is implemented using artificial intelligence method. This studies use the values of five indexes (i.e., impact index, fusion index per technology, fusion index per patent, diffusion index per technology and diffusion index per patent) at different time (e.g., t-n, t-n-1, t-n-2, ${\cdots}$) as input variables. The out variables are values of five indexes at time t, which is used for learning. The learning method adopted in this study is backpropagation algorithm. In the third module, this study recommends final promising technologies based on analytic hierarchy process. AHP provides relative importance of each index, leading to final promising index for technology. Applicability of the proposed methodology is tested by using U.S. patents in international patent class G06F (i.e., electronic digital data processing) from 2000 to 2008. The results show that mean absolute error value for prediction produced by the proposed methodology is lower than the value produced by multiple regression analysis in cases of fusion indexes. However, mean absolute error value of the proposed methodology is slightly higher than the value of multiple regression analysis. These unexpected results may be explained, in part, by small number of patents. Since this study only uses patent data in class G06F, number of sample patent data is relatively small, leading to incomplete learning to satisfy complex artificial intelligence structure. In addition, fusion index per technology and impact index are found to be important criteria to predict promising technology. This study attempts to extend the existing knowledge by proposing a new methodology for prediction technology value by integrating patent information analysis and artificial intelligence network. It helps managers who want to technology develop planning and policy maker who want to implement technology policy by providing quantitative prediction methodology. In addition, this study could help other researchers by proving a deeper understanding of the complex technological forecasting field.