• Title/Summary/Keyword: Minimum-energy

Search Result 1,834, Processing Time 0.033 seconds

Comparing Physical and Thermal Environments Using UAV Imagery and ENVI-met (UAV 영상과 ENVI-met 활용 물리적 환경과 열적 환경 비교)

  • Seounghyeon KIM;Kyunghun PARK;Bonggeun SONG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.145-160
    • /
    • 2023
  • The purpose of this study was to compare and analyze diurnal thermal environments using Unmanned Aerial Vehicles(UAV)-derived physical parameters(NDVI, SVF) and ENVI-met modeling. The research findings revealed significant correlations, with a significance level of 1%, between UAV-derived NDVI, SVF, and thermal environment elements such as S↑, S↓, L↓, L↑, Land Surface Temperature(LST), and Tmrt. In particular, NDVI showed a strong negative correlation with S↑, reaching a minimum of -0.52** at 12:00, and exhibited a positive correlation of 0.53** or higher with L↓ at all times. A significant negative correlation of -0.61** with LST was observed at 13:00, suggesting the high relevance of NDVI to long-wavelength radiation. Regarding SVF, the results showed a strong relationship with long-wave radiative flux, depending on the SVF range. These research findings offer an integrated approach to evaluating thermal comfort and microclimates in urban areas. Furthermore, they can be applied to understand the impact of urban design and landscape characteristics on pedestrian thermal comfort.

Experimental and numerical study on the structural behavior of Multi-Cell Beams reinforced with metallic and non-metallic materials

  • Yousry B.I. Shaheen;Ghada M. Hekal;Ahmed K. Fadel;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.611-633
    • /
    • 2024
  • This study intends to investigate the response of multi-cell (MC) beams to flexural loads in which the primary reinforcement is composed of both metallic and non-metallic materials. "Multi-cell" describes beam sections with multiple longitudinal voids separated by thin webs. Seven reinforced concrete MC beams measuring 300×200×1800 mm were tested under flexural loadings until failure. Two series of beams are formed, depending on the type of main reinforcement that is being used. A control RC beam with no openings and six MC beams are found in these two series. Series one and two are reinforced with metallic and non-metallic main reinforcement, respectively, in order to maintain a constant reinforcement ratio. The first crack, ultimate load, deflection, ductility index, energy absorption, strain characteristics, crack pattern, and failure mode were among the structural parameters of the beams under investigation that were documented. The primary variables that vary are the kind of reinforcing materials that are utilized, as well as the kind and quantity of mesh layers. The outcomes of this study that looked at the experimental and numerical performance of ferrocement reinforced concrete MC beams are presented in this article. Nonlinear finite element analysis (NLFEA) was performed with ANSYS-16.0 software to demonstrate the behavior of composite MC beams with holes. A parametric study is also carried out to investigate the factors, such as opening size, that can most strongly affect the mechanical behavior of the suggested model. The experimental and numerical results obtained demonstrate that the FE simulations generated an acceptable degree of experimental value estimation. It's also important to demonstrate that, when compared to the control beam, the MC beam reinforced with geogrid mesh (MCGB) decreases its strength capacity by a maximum of 73.33%. In contrast, the minimum strength reduction value of 16.71% is observed in the MC beams reinforced with carbon reinforcing bars (MCCR). The findings of the experiments on MC beams with openings demonstrate that the presence of openings has a significant impact on the behavior of the beams, as there is a decrease in both the ultimate load and maximum deflection.

A Study of Wind Characteristics around Nuclear Power Plants Based on the Joint Distribution of the Wind Direction and Wind Speed

  • Yunjong Lee
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.299-307
    • /
    • 2023
  • Given that toxic substances are diffused by the various movements of the atmosphere, it is very important to evaluate the risks associated with this phenomenon. When analyzing the behavioral characteristics of these atmospheric diffusion models, the main input data are the wind speed and wind direction among the meteorological data. In particular, it is known that a certain wind direction occurs in summer and winter in Korea under the influence of westerlies and monsoons. In this study, synoptic meteorological observation data provided by the Korea Meteorological Administration were analyzed from January 1, 2012 to the end of August of 2022 to understand the regional wind characteristics of nuclear power plants and surrounding areas. The selected target areas consisted of 16 weather stations around the Hanbit, Kori, Wolsong, Hanul, and Saeul nuclear power plants that are currently in operation. The analysis was based on the temperature, wind direction, and wind speed data at those locations. Average, maximum, minimum, median, and mode values were analyzed using long-term annual temperature, wind speed, and wind direction data. Correlation coefficient values were also analyzed to determine the linear relationships among the temperature, wind direction, and wind speed. Among the 16 districts, Uljin had the highest wind speed. The median wind speed values for each region were lower than the average wind speed values. For regions where the average wind speed exceeds the median wind speed, Yeongju, Gochang, Gyeongju, Yeonggwang, and Gimhae were calculated as 0.69 m s-1, 0.54m s-1, 0.45m s-1, 0.4m s-1, and 0.36m s-1, respectively. The average temperature in the 16 regions was 13.52 degrees Celsius; the median temperature was 14.31 degrees and the mode temperature was 20.69 degrees. The average regional temperature standard deviation was calculated and found to be 9.83 degrees. The maximum summer temperatures were 39.7, 39.5, and 39.3 in Yeongdeok, Pohang, and Yeongcheon, respectively. The wind directions and speeds in the 16 regions were plotted as a wind rose graph, and the characteristics of the wind direction and speed of each region were investigated. It was found that there is a dominant wind direction correlated with the topographical characteristics in each region. However, the linear relationship between the wind speed and direction by region varied from 0.53 to 0.07. Through this study, by evaluating meteorological observation data on a long-term synoptic scale of ten years, regional characteristics were found.

A Study on Radiation Exposure using Nominal Risk Coefficients (명목위험계수를 활용한 방사선 피폭에 관한 연구)

  • Joo-Ah Lee;Jong-Gil Kwak;Cheol-Min Jeon
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.4
    • /
    • pp.383-389
    • /
    • 2024
  • In this study, we aimed to analyze the probability of secondary cancer occurring in the abdomen, a normal organ, due to photoneutron exposure during intensity-modulated radiotherapy for prostate cancer. The design of the radiation treatment plan for prostate cancer was established as a daily prescription dose of 220 cGy, a total of 35 treatments, and 7700 cGy. The experimental equipment was a True Beam STx (Varian, USA) linear accelerator from Varian. The energy used in the experiment was 15 MV, and the treatment plan was designed so that the photoneutron dose would be generated within the planning target volume (PTV). The radiation treatment plan was an Eclipse System (Varian Ver. 10.0, USA), and the number of irradiation portals was set to 5 to 9. The irradiation angle was designed so that 95% of the prescription dose area was set to 0 to 320°, and the number of beamlets per irradiation portal was set to 100. The optically stimulated luminescence dosimeter used in this study to measure the dose of photoneutrons was designed to measure photoneutron doses by coating 6LiCO3 on a device containing aluminum oxide components. It was studied that there is a minimum of 7.07 to 11 cases per 1,000 people with secondary cancer due to the photoneutron dose to the abdomen during intensity-modulated radiotherapy. In this study, we studied the risk of secondary radiation dose that may occur during intensity-modulated radiotherapy, and we expect that this will be used as meaningful data related to the probabilistic effects of radiation in the future.

The characteristics of the passively Q-switched Nd:YAG laser output energy with the initial absorbing effect of Cr4+:YAG absorber (수동 큐스위칭 Nd:YAG 레이저에서 포화흡수체 Cr4+:YAG의 초기 광흡수 효과와 출력 특성)

  • Choi, Young-Soo;Yoon, Joo-Hong;Kim, Ki-Hong
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.340-346
    • /
    • 2002
  • To understand the characteristics of the passively Q-switched Nd:YAG laser output energy with $Cr^{4+}$:YAG saturable absorbers, the transmissions of $Cr^{4+}$:YAG and the inversion population densities of Nd:YAG at the onset of Q-switch were experimentally analysed. The measured transmissions at the onset of Q-switch were 0.70$\pm$0.02 and 0.62$\pm$0.02 for the 0.48 and 0.38 of initial transmission, respectively. It means that the initial transmission loss of $Cr^{4+}$:YAG absorber is reduced in a low Q-state due to the initial absorbing effect of $Cr^{4+}$:YAG. In pumping stage, $Cr^{4+}$:YAG has absorbing processes due to the fluorescence and amplified spontaneous emissions of the Nd:YAG even if there is no laser oscillation. The minimum population inversion densities for Qswitch were approximately 3.7${\times}{10^{17}}$ and 4.0${\times}{10^{17}}$ $cm^{-3}$, respectively. At the beginning of Q-switch, the number density of $Cr^{4+}$ions in the ground state of $Cr^{4+}$:YAG was approximately 1.4${\times}{10^{17}}$ $cm^{-3}$ and the ratio of the ground to the excited state of absorbing $Cr^{4+}$ions was 0.44 both. The modified theoretical output energies with the initial absorbing effect were 18 and 18.5 mJ. The measured output energies were 17$\pm$1 and 18$\pm$1.5 mJ, respectively. The quantum extraction efficiencies of Q-switch were 0.32 both. The theoretical Q-switched output results with the initial absorbing effect of the saturable absorber are a good agreement with the experimental results.

Spatial Distributions and Monthly Variations of Water Quality in Coastal Seawater of Tongyeong, Korea (통영 주변 해역 수질의 공간분포 및 월 변화 특성)

  • Lee, Young-Sik;Lim, Weol-Ae;Jung, Chang-Su;Park, Jong-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.3
    • /
    • pp.154-162
    • /
    • 2011
  • Seawater quality was investigated each month at 30 stations near Tongyeong, South Korea, to provide data for the effective use of coastal fisheries and the reduction of economic damage to marine products. Water temperature was lowest in January and highest at the end of August. Neither extremely low water temperature below $4^{\circ}C$ nor fish damage caused by low water temperature was observed. Salinity ranged from 24.04 to 34.39 psu in the surface layer and from 29.92 to 34.39 psu in the bottom layer. The minimum salinity, attributable to rainfall events, was observed in July; salinity increased to high of about 34 psu in November. Low dissolved oxygen (DO), below 4 mg/L, was observed at Wenmun and Buksin Bays during May to October. Concentrations of $NO_2$-N, $NO_3$-N, and $PO_4$-P were low from March to September and high from October to February. Transparency was 6 m on average and was high in Wenmun Bay. Chemical oxygen demand (COD) and chlorophyll a (Chl. a) were high during summer, when the water temperature was high. With cluster analysis based on environment factors related to water quality, the study area could be divided into three main sea areas: Buksin Bay, coastal seawater, and offshore seawater. Buksin Bay was characterized by low salinity, high DO and Chl. a, and high transparency in the surface layer and by low DO and high $NH_4$-N in the bottom layer. Offshore seawater had high salinity and $NO_3$-N and low Chl. a concentration. In summer season that oyster need lots of phytoplankton, $NO_3$-N and Chl. a concentrations at this study area were low compare to Gwangy-ang and Gamak Bays. In winter, a sea squirt swallow much more than other season, the Chl. a concentrations were also low than Gwangyang and Gamak Bays.

바지락, Ruditapes philippinarum의 생식소 발달 단계에 따른 폐각근 조직과 내장낭 조직의 생화학적 성분 변화

  • Chung, Ee-Yung;Kim, Jong-Bae;Moon, Jae-Hak;Hur, Sung-Bum
    • The Korean Journal of Malacology
    • /
    • v.19 no.1
    • /
    • pp.41-51
    • /
    • 2003
  • Reproductive cycle with the gonadal development of Ruditapes philippinarum can be classified into five successive stages by histological observations: early active stage (January to March), late active stage (February to May), ripe stage (April to August), partially spawned stage (May to October), and spent/inactive stage (August to February). Changes in total protein contents in the adductor muscle tissues reached the maximum in the early and late active stages (February) and appeared the minimum in the ripe and partially spawned stages (May), while changes in their contents in the visceral mass tissues reached the maximum in the ripe and partially spawned stages (June) and gradually decreased in the partially spawned stage (June to October). On the whole, changes in total protein contents showed a negative correlationship between the adductor muscle and visceral mass tissues (r = -0.292, p < 0.05). Changes in total lipid contents in the adductor muscle tissues reached the maximum in the inactive and early active stages (January) and sharply decreased in the early and late active stages (February), while their contents in the visceral mass tissues reached the maximum in the ripe and partially spawned stages (April) and gradually decreased in the partially spawned stage (to October). On the whole, changes in total lipid contents showed a negative correlationship between the adductor muscle and visceral mass tissues (r = -0.699, p<0.05). Changes in glycogen contents in the adductor muscle tissues reached the maximum in the late active and ripe stages (April) and rapidly decreased in the partially spawned stage (May to October), while their contents in the visceral mass tissues reached the maximum in the early and late active stages (February) and rapidly decreased in the late active stage (March). Thereafter, their levels gradually increased in the ripe and partially spawned stages (April to July). On the whole, changes in glycogen contents appeared no correlationship between the adductor muscle and visceral mass tissues (r = 0.062, p > 0.05). These results indicate that the adductor muscle and visceral mass tissues are an important energy storage and nutrient supply organ in the Manila clams, and the nutrient contents of the adductor muscle and visceral muscle tissues change in response to gonadal energy needs.

  • PDF

Accurate Quality Control Method of Bone Mineral Density Measurement -Focus on Dual Energy X-ray Absorptiometry- (골밀도 측정의 정확한 정도관리방법 -이중 에너지 방사선 흡수법을 중심으로-)

  • Kim, Ho-Sung;Dong, Kyung-Rae;Ryu, Young-Hwan
    • Journal of radiological science and technology
    • /
    • v.32 no.4
    • /
    • pp.361-370
    • /
    • 2009
  • The image quality management of bone mineral density is the responsibility and duty of radiologists who carry out examinations. However, inaccurate conclusions due to lack of understanding and ignorance regarding the methodology of image quality management can be a fatal error to the patient. Therefore, objective of this paper is to understand proper image quality management and enumerate methods for examiners and patients, thereby ensuring the reliability of bone mineral density exams. The accuracy and precision of bone mineral density measurements must be at the highest level so that actual biological changes can be detected with even slight changes in bone mineral density. Accuracy and precision should be continuously preserved for image quality of machines. Those factors will contribute to ensure the reliability in bone mineral density exams. Proper equipment management or control methods are set with correcting equipment each morning and after image quality management, a phantom, recommended from the manufacturer, is used for ten to twenty-five measurements in search of a mean value with a permissible range of ${\pm}1.5%$ set as standard. There needs to be daily measurement inspections on the phantom or at least inspections three times a week in order to confirm the existence or nonexistence of changes in values in actual bone mineral density. in addition, bone mineral density measurements were evaluated and recorded following the rules of Shewhart control chart. This type of management has to be conducted for the installation and movement of equipment. For the management methods of inspectors, evaluation of the measurement precision was conducted by testing the reproducibility of the exact same figures without any real biological changes occurring during reinspection. Bone mineral density inspection was applied as the measurement method for patients either taking two measurements thirty times or three measurements fifteen times. An important point when taking measurements was after a measurement whether it was the second or third examination, it was required to descend from the table and then reascend. With a 95% confidence level, the precision error produced from the measurement bone mineral figures came to 2.77 times the minimum of the biological bone mineral density change. The value produced can be stated as the least significant change (LSC) and in the case the value is greater, it can be stated as a section of genuine biological change. From the initial inspection to equipment moving and shifter, management must be carried out and continued in order to achieve the effects. The enforcement of proper quality control of radiologists performing bone mineral density inspections which brings about the durability extensions of equipment and accurate results of calculations will help the assurance of reliable inspections.

  • PDF

Estimate of Heat Flux in the East China Sea (동지나해의 열속추정에 관한 연구)

  • KIM Young-Seup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.1
    • /
    • pp.84-91
    • /
    • 1996
  • Heat flux of the East China Sea was estimated with the bulk method, the East China mount based on the marine meteorological data and cloud amount data observed by a satellite. Solar radiation is maximum in May and minimum in December. Its amount decreases gradually southward during the winter half year (from October to March), and increases northward during the summer half year (from April to September) due to the influence of Changma (Baiu) front. The spatial difference of long-wave radiation is relatively small, but its temporal difference is quite large, i.e., the value in February is about two times greater than that in July. The spatial patterns of sensible and latent heat fluxes reflect well the effect of current distribution in this region. The heat loss from the ocean surface is more than $830Wm^{-2}$ in winter, which is five times greater than the net radiation amount during the same period, The annual net heat flux is negative, which means heat loss from the sea surface, in the whole region over the East China Sea. The region with the largest loss of more than $400Wm^{-2}$ in January is observed over the southwestern Kyushu. The annual mean value of solar radiation, long-wave radiation, sensible and latent heat fluxes are estimated $187Wm^{-2},\;-52Wm^{-2},\;-30Wm^{-2}\;and\;-137Wm^{-2}$, respectively, consequently the East China Sea losses the energy of $32Wm^{-2}(2.48\times10^{13}W)$. Through the heat exchange between the air and the sea, the heat energy of $0.4\times10^{13}W$ is supplied from the air to the sea in A region (the Yellow Sea), $2.1\times10^{13}W$ in B region (the East China Sea) and $1.7\times10^{13}W$ in C region (the Kuroshio part), respectively.

  • PDF

Heating Efficiency of Difference Heat Collection Methods for Greenhouse (유리온실의 태양열 집열방법별 집열효과)

  • 최영하;이재한;권준국;박동금;이한철
    • Journal of Bio-Environment Control
    • /
    • v.9 no.3
    • /
    • pp.166-170
    • /
    • 2000
  • Three methods for heat collection, which were the flat solar collector, two fan with radiator, and square pipe method, were studied to sue efficiently solar energy in the three different glasshouses for two years. The flat plate solar collector method was made use of the commercial solar collector with collection area of 24$m^2$, the method of two fans with radiators collected solar energy at the top of the glasshouse. An thermal storage tank was constructed underneath in teach glasshouses. When an area of 1,000$m^2$ was heated to the minimum temperature of 9$^{\circ}C$, the decrease rate of heating fuel for the flat plate solar collector, the fan attached radiator and the square pipe methods were 7%, 19% and 28% respectively. The flat plate solar collector method, which could be heated approximately 40-50$m^2$, was currently used by most of the farmer. Under the condition, the decrease rate of annual heating fuel was 14% which was not better for an economic annual heating fuel. If the fan with radiator method was operated, the use of installation and maintenance were required. So, it could not be good economic efficiency of solar heating. The heating efficiency of the square pipe method was relatively better thant those of the flat plate solar collector or the fan attached radiator. Since the cost of materials and its installation of the use of square pipe method was lower than any other method. However, corrosion of the pipe, greater shade in the greenhouse and strength against the square pipe were problems that should be overcome in the square pipe method.

  • PDF