The Benefit of Individualized Custom Bolus in the Postmastectomy Radiation Therapy : Numerical Analysis with 3-D Treatment Planning

유방전절제술 후 방사선치료를 위한 조직보상체 개발 및 3차원 치료계획을 통한 유용성 분석

  • Cho Jae Ho (Department of Radiation Oncology, Yonsei University College of Medicine, Yonsei Cancer Center) ;
  • Cho Kwang Hwan (Department of Radiation Oncology, Yonsei University College of Medicine, Yonsei Cancer Center) ;
  • Keum Kichang (Department of Radiation Oncology, Yonsei University College of Medicine, Yonsei Cancer Center) ;
  • Han Yongyih (Department of Radiation Oncology, Yonsei University College of Medicine, Yonsei Cancer Center) ;
  • Kim Yong Bae (Department of Radiation Oncology, Yonsei University College of Medicine, Yonsei Cancer Center) ;
  • Chu Sung Sil (Department of Radiation Oncology, Yonsei University College of Medicine, Yonsei Cancer Center) ;
  • Suh Chang Ok (Department of Radiation Oncology, Yonsei University College of Medicine, Yonsei Cancer Center)
  • 조재호 (연세대학교 의과대학 연세암센터 방사선종양학교실) ;
  • 조광환 (연세대학교 의과대학 연세암센터 방사선종양학교실) ;
  • 금기창 (연세대학교 의과대학 연세암센터 방사선종양학교실) ;
  • 한영이 (연세대학교 의과대학 연세암센터 방사선종양학교실) ;
  • 김용배 (연세대학교 의과대학 연세암센터 방사선종양학교실) ;
  • 추성실 (연세대학교 의과대학 연세암센터 방사선종양학교실) ;
  • 서창옥 (연세대학교 의과대학 연세암센터 방사선종양학교실)
  • Published : 2003.03.01

Abstract

Purpose : To reduce the Irradiation dose to the lungs and heart in the case of chest wail irradiation using an oppositional electron beam, we used an Individualized custom bolus, which was precisely designed to compensate for the differences In chest wall thickness. The benefits were evaluated by comparing the normal tissue complication probablilties (NTCPS) and dose statistics both with and without boluses. Materials and Methods : Boluses were made, and their effects evaluated in ten patients treated using the reverse hockey-stick technique. The electron beam energy was determined so as to administer 80% of the irradiation prescription dose to the deepest lung-chest wall border, which was usually located at the internal mammary lymph node chain. An individualized custom bolus was prepared to compensate for a chest wall thinner than the prescription depth by meticulously measuring the chest wall thickness at 1 emf intervals on the planning CT Images. A second planning CT was obtained overlying the individuailzed custom bolus for each patient's chest wall. 3-D treatment planning was peformed using ADAC-Pinnacle$^{3}$ for all patients with and without bolus. NTCPS based on 'the Lyman-Kutcher' model were analyzed and the mean, maximum, minimum doses, V$_{50}$ and V$_{95}$ for 4he heari and lungs were computed. Results .The average NTCPS in the ipsliateral lung showed a statistically significant reduction (p<0.01), from 80.2${\pm}$3.43% to 47.7${\pm}$4.61%, with the use of the individualized custom boluses. The mean lung irradiation dose to the ipsilateral iung was also significantly reduced by about 430 cGy, Trom 2757 cGy to 2,327 cGy (p<0.01). The V$_{50}$ and V$_{95}$ in the ipsilateral lung markedly decreased from the averages of 54.5 and 17.4% to 45.3 and 11.0%, respectively. The V$_{50}$ and V$_{95}$ In the heart also decreased from the averages of 16.8 and 6.1% to 9.8% and 2.2%, respectively. The NTCP In the contralateral lung and the heart were 0%, even for the cases with no bolus because of the small effective mean radiation volume values of 4.4 and 7.1%, respectively Conclusion : The use of an Individualized custom bolus in the radiotherapy of postrnastectorny chest wall reduced the NTCP of the ipsilateral lung by about 24.5 to 40.5%, which can improve the complication free cure probability of breast cancer patients.

목적 : 유방암의 수술 후 방사선조사 시 폐나 심장 등 정상 증기에 대한 합병증을 줄이고자 흉벽에 대한 전자선 치료 시 조사야 내 전체 흉벽 두께를 균일하도록 보상할 수 있는 개별화된 조직보상체를 제작하였으며, 3차원 입체조형치료계획을 통하여 유용성을 평가하고자 하였다. 대상 및 방법 :유방전절제술 후 방사선치료를 받는 10명의 환자를 대상으로 하였다 우측 유방암 환자가 3명, 좌측유방암 환자가 7명이었다. 모든 환자는 조사야를 결정하기 위한 모의치료를 시행한 후 치료계획용 컴퓨터단층촬영을 하였으며, 이를 바탕으로 1 cm$^{2}$ 간격으로 흉벽 두께를 세밀히 측정하였다. 이후 주로 내유방림프절 근방인 가장 두꺼운 흉벽 부위를 기준으로 그 곳의 전방 흉막면에 80% 선량이 조사될 수 있는 방사선에너지를 설정하고, 이 부위를 기준으로 보다 얇은 흉벽을 보상하기 위한 개별화된 조직보상체를 제작하였으며, 제작된 조직보상체를 적용하여 다시 치료계획용 컴퓨터단층촬영을 시행하였다. 이후 각 환자의 영상자료를 이용하여 3차원 치료계획용 프로그램으로 설계하였다. 매 환자에서 조직보상체 적용 전후로 등선량곡선 분포 및 선량체적히스토그램을 비교하였고, 정상조직합병증발생률(normal tissue complication probability, NTCP)의 변화 및 기타 선량통계값도 분석 비교하였다. 결과 : 조직보상체를 적용하였을 때 모든 예에서 처방선량의 80% 등선량곡선의 깊이가 흉벽 두께와 거의 일치하였다. 조직보상체를 사용하지 않았을 때는 90% 이상의 등선량 곡선이 전방 흉막면을 지나 폐 실질 부위에 깊이 걸쳐 있는 경우가 많았으며, 특히 좌측 유방암의 경우에는 심장에도 불필요하게 높은 선량이 조사됨을 관찰할 수 있었다. 선량체적히스토그램을 조직보상체 적용 전후로 동측 폐, 반대측 폐 및 심장에 대하여 각각 비교하였는데 모든 예에서 조직보상체를 사용하였을 때 동측 폐의 선량체적히스토그램이 크게 향상된 소견을 보였으만 심장의 경우 좌측 유방암 환자에서 특히 두드러진 향상을 보였다. 동측 페의 경우 조직보상체를 적용하지 않았을 때 평균NTCP 값이 80.2${\pm}$3.43%이고, 조직보상체를 사용한 경우에는 평균 NTCP 값이 47.7${\pm}$4.61%로 개별화된 조직보상체의 사용으로 24.5~40.5%의 정상조직합병증발생률을 줄일 수 있었다. 동측 폐와 심장에 대해서 평균 선량, V$_{50}$ (처방선량 50% 이상의 선량이 조사되는 체적의 백분율), V$_{95}$ (처방선량 95% 이상의 선량이 조사되는 체적의 백분율), 최대 선량, 최소 선량 등을 구하여 보았을 때 평균 선량, V$_{50}$, V$_{95}$은 조직보상체 적용 전후에 두드러진 변화를 보였으나 최대선량 및 최소 선량값은 별다른 차이를 보이지 않았다. 결론 : 조직보상체를 적용하였을 때 적용하지 않은 경우에 비해 등선량곡선분포, 선량체적히스토그램, Lymankutcher 모델에 의한 정상조직합병증발생률 및 기타 선량통계값 등 모든 면에 있어서 우월성을 확인할 수 있었다. 향후 이러한 결과가 임상에서 실질적인 합병증 발생률 감소와 잘 연계되는지 계속적인 추적관찰 및 연구가 필요할것으로 생각된다.

Keywords

References

  1. Overgaard M, Hansen PS, Overgaard J, et al. Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy. N Engl J Med 1997;337(14):949-955 https://doi.org/10.1056/NEJM199710023371401
  2. Ragaz J, Jackson SM, Le N, et al. Adjuvant radiotherapy and chemotherapy in node-positive premenopausal women with breast cancer. N Eng J Med 1997;337(14):956-962 https://doi.org/10.1056/NEJM199710023371402
  3. Rothwell RI, Kelly SA, Joslin CAF. Radiation pneumonitis in patients treated for breast cancer. Radiother Oncol 1985;4: 9-14 https://doi.org/10.1016/S0167-8140(85)80056-6
  4. Price A, Jack WJL, Kerr GR, et al. Acute radiation pneumonitis after postmastectomy irradiation: Effect of fraction size. Clin Oncol 1990;2:224-229 https://doi.org/10.1016/S0936-6555(05)80173-6
  5. Hardman PDJ, Tweeddale PM, Kerr GR, Anderson ED, et al. The effect of pulmonary function of local and locoregional irradiation for breast cancer. Radiother Oncol 1994; 30:33-42 https://doi.org/10.1016/0167-8140(94)90007-8
  6. Paszat LF, Mackillop WJ, Groome PA, et al. Mortality form myocardial infarction after adjuvant radiotherapy for breast cancer in the surveillance. epidemiology. and endresults cancer resgistries. J Clin Oncol 1998;16:2625-2631
  7. Das IJ, Cheng EC, Freedman G, et al. Lung and heart dose volume analysis with CT simulator in radiation treatment of breast cancer. Int J Radiat Oncol Bioi Phys 1998;42:11-19
  8. Gyenes G, Gagliardi G, Lax I, et al. Reevaluation of irradiated heart volumes in stage I breast cancer patients treated with postoperative adjuvant radiotherapy. J Clin Oncol 1997;15:1348-1453
  9. Kwa SLS, Lebesque JS, Theuws JCM, et al. Radiation pneumonitis as a function of mean lung dose: An analysis of pooled data of 540 patients. Int J Radiat Oncol Biol Phys 1998;42:1-9
  10. Segawa Y, Takigawa N, Kataoka M, et al. Risk factors for development of radiation pneumonitis following radiation therapy with or without chemotherapy for lung cancer. Int J Radiat Oncol Biol Phys 1997;39:91-98 https://doi.org/10.1016/S0360-3016(97)00297-6
  11. Ginsberg RJ, Kris MG, Armstrong JG. Cancer of the lung: Non-small cell lung cancer. In: DeVita VT, Hellman S, Rosenberg S, eds. Cancer: Principles and practice of oncology. 4th ed. Philadelphia: Lippincott Co. 1993:676-723
  12. Lyman JT. Complication probability as assessed from dosevolume histograms. Radiat res 1985;104:s13-s19 https://doi.org/10.2307/3576626
  13. Kutcher GJ, Burman C. Calculation of complication probability factors for non-uniform normal tissue irradiation: The effective volume method. Int J Radiat Oncol Bioi Phys 1989;16:1623-1630 https://doi.org/10.1016/0360-3016(89)90972-3
  14. Ragazzi G, Cattaneo GM, Fiorino C, et al. Use of dosevolume histograms and biophysical models to compare 2D and 3D irradiation techniques for non-small cell lung cancer. Br J Radiol 1999;72:279-288
  15. Martel MK, Haken RKT, Hazuk MB, et al. Dose-volume histogram and 3-D treatment planning evaluation of patients with pneumonitis. Int J Radiat Oncol Bioi Phys 1994;28:575-581 https://doi.org/10.1016/0360-3016(94)90181-3
  16. Oetzel D, Schraube P, Hensely F, et al. Estimation of pneumonitis risk in three-dimensional treatment planning using dose-volume histogram analysis. Int J Radiat Oncol Biol Phys 1995;33:455-460 https://doi.org/10.1016/0360-3016(95)00009-N
  17. Hurkmans CW, Borger JH, Bas LJ, et al. Cardiac and lung complication probabilities after breast cancer irradiation. Radiother Oncol 2000;55:145-151 https://doi.org/10.1016/S0167-8140(00)00152-3
  18. Pezner RD, Lipsett JA, Forell B, et al. The reverse hockey stick technique: Post-mastectomy radiation therapy for breast cancer patients with locally advanced tumor presentation or extensive loco-regional recurrence. Int J Radiat Oncol Biol Phys 1989;17:191-197
  19. Fletcher GH, McNeese MD, Oswald MJ. Long-range results for breast cancer patients treated by radical mastectomy and post-operative radiation without adjuvant chemotherapy: an update. Int J Radiat Oncol Biol Phys 1989;17:11-14
  20. Uematsu M, Bornstein B, Recht A, et al. Long-term results of post-operative radiation therapy following mastectomy with and without chemotherapy in stage I-III breast cancer. Int J Radiat Oncol Biol Phys 1993;25:765-770 https://doi.org/10.1016/0360-3016(93)90303-D
  21. Cuzick J, Stewart H, Rutqvist L, et al. Cause-specific mortality in long-term survivors of breast cancer who participated in trials of radiotherapy. J Clin Oncol 1994;12:447-453
  22. Rutqvist L, Lax I, Fornander T, et al. Cardiovascular mortality in a randomized trial of adjuvant radiation therapy versus surgery alone in primary breast cancer. Int J Radiat Oncol Biol Phys 1992;22:887-896 https://doi.org/10.1016/0360-3016(92)90784-F
  23. Archambeau JO, Forell B, Doria R, et al. Use of variable thickness bolus to control election beam penetration in chest wall irradiation. Int J Radiat Oncol Biol Phys 1981; 7:835-842 https://doi.org/10.1016/0360-3016(81)90483-1
  24. Almond P, Bagne F, Ovadia J, et al. Practical aspects of electron beam treatment planning. Symposium Monograph Presented at the 16th Annual Meeting of the American Association of Physicists in Medicine, Cincinati, Ohio, July 31, 1977
  25. Kelly C, Reid A, Mohan R, et al. Electron beam treatment planning utilizing CCT data. SCientific exhitit presented at the 21st Annual Meeting of the American Society of Therapeutic Radiologists, New Orleans, Louisiana, October 23-27, 1979
  26. Prato F, Kurdyak R, Saibil E, et al. Physiological and radiographic assessment during the development of pulmonary radiation fibrosis. Radiology 1977;122:389-397
  27. Schulteiss TE, Orton CG, Peck RA. Models in radiotherapy: volume effects. Med Phys 1983;10:410-415 https://doi.org/10.1118/1.595312
  28. Nirnierko A, Goiten M. Modeling of normal tissue response to radiation: the critical volume model. Int J Radiat Oncol Biol Phys 1993;25:51-63
  29. Withers HR, Taylor JMG, Macjejewski B. Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys 1988; 59:751-759
  30. Dale E, Olsen DR. Specification of the dose to organs at risk in extemal beam radiotherapy. Acta Oncol 1997;36:129-135 https://doi.org/10.3109/02841869709109220
  31. Marks LB, Munley MT, Bentel GC, et al. Physical and biological predictors of changes in whole lung function following thoracic irradiation. Int J Radiat Oncol Biol Phys 1997; 39(3):563-570 https://doi.org/10.1016/S0360-3016(97)00343-X
  32. Kwa SLS, Theuws JCM, Wagenaar A, et al. Evaluation of two dose-volume histogram reduction models for the prediction of radiation pneumonitis. Radiother Oncol 1998;48;61-69