• Title/Summary/Keyword: Minimum statistics

Search Result 356, Processing Time 0.03 seconds

Improved Minimum Statistics Based on Environment-Awareness for Noise Power Estimation (환경인식 기반의 향상된 Minimum Statistics 잡음전력 추정기법)

  • Son, Young-Ho;Choi, Jae-Hun;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.123-128
    • /
    • 2011
  • In this paper, we propose the improved noise power estimation in speech enhancement under various noise environments. The previous MS algorithm tracking the minimum value of finite search window uses the optimal power spectrum of signal for smoothing and adopts minimum probability. From the investigation of the previous MS-based methods it can be seen that a fixed size of the minimum search window is assumed regardless of the various environment. To achieve the different search window size, we use the noise classification algorithm based on the Gaussian mixture model (GMM). Performance of the proposed enhancement algorithm is evaluated by ITU-T P.862 perceptual evaluation of speech quality (PESQ) under various noise environments. Based on this, we show that the proposed algorithm yields better result compared to the conventional MS method.

Minimum Disparity Estimation for Normal Models: Small Sample Efficiency

  • Cho M. J.;Hong C. S.;Jeong D. B.
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.149-167
    • /
    • 2005
  • The minimum disparity estimators introduced by Lindsay and Basu (1994) are studied empirically. An extensive simulation in this paper provides a location estimate of the small sample and supplies empirical evidence of the estimator performance for the univariate contaminated normal model. Empirical results show that the minimum generalized negative exponential disparity estimator (MGNEDE) obtains high efficiency for small sample sizes and dominates the maximum likelihood estimator (MLE) and the minimum blended weight Hellinger distance estimator (MBWHDE) with respect to efficiency at the contaminated model.

A Study for Obtaining Weights in Pairwise Comparison Matrix in AHP

  • Jeong, Hyeong-Chul;Lee, Jong-Chan;Jhun, Myoung-Shic
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.3
    • /
    • pp.531-541
    • /
    • 2012
  • In this study, we consider various methods to estimate the weights of a pairwise comparison matrix in the Analytic Hierarchy Process widely applied in various decision-making fields. This paper uses a data dependent simulation to evaluate the statistical accuracy, minimum violation and minimum norm of the obtaining weight methods from a reciprocal symmetric matrix. No method dominates others in all criteria. Least squares methods perform best in point of mean squared errors; however, the eigenvectors method has an advantage in the minimum norm.

Minimum Density Power Divergence Estimator for Diffusion Parameter in Discretely Observed Diffusion Processes

  • Song, Jun-Mo;Lee, Sang-Yeol;Na, Ok-Young;Kim, Hyo-Jung
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.267-280
    • /
    • 2007
  • In this paper, we consider the robust estimation for diffusion processes when the sample is observed discretely. As a robust estimator, we consider the minimizing density power divergence estimator (MDPDE) proposed by Basu et al. (1998). It is shown that the MDPDE for diffusion process is weakly consistent. A simulation study demonstrates the robustness of the MDPDE.

Minimum Distance Estimation Based On The Kernels For U-Statistics

  • Park, Hyo-Il
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.1
    • /
    • pp.113-132
    • /
    • 1998
  • In this paper, we consider a minimum distance (M.D.) estimation based on kernels for U-statistics. We use Cramer-von Mises type distance function which measures the discrepancy between U-empirical distribution function(d.f.) and modeled d.f. of kernel. In the distance function, we allow various integrating measures, which can be finite, $\sigma$-finite or discrete. Then we derive the asymptotic normality and study the qualitative robustness of M. D. estimates.

  • PDF

A Probabilistic Combination Method of Minimum Statistics and Soft Decision for Robust Noise Power Estimation in Speech Enhancement (강인한 음성향상을 위한 Minimum Statistics와 Soft Decision의 확률적 결합의 새로운 잡음전력 추정기법)

  • Park, Yun-Sik;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.153-158
    • /
    • 2007
  • This paper presents a new approach to noise estimation to improve speech enhancement in non-stationary noisy environments. The proposed method combines the two separate noise power estimates provided by the minimum statistics (MS) for speech presence and soft decision (SD) for speech absence in accordance with SAP (Speech Absence Probability) on a separate frequency bin. The performance of the proposed algorithm is evaluated by the subjective test under various noise environments and yields better results compared with the conventional MS or SD-based schemes.

Robust Discriminant Analysis using Minimum Disparity Estimators

  • 조미정;홍종선;정동빈
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.135-140
    • /
    • 2004
  • Lindsay and Basu (1994)에 의해 소개된 최소차이추정량 (Minimum Disparity Estimators)들은 실제 자료 분석 도구로써 유용하다. 본 논문에서는 최소일반화음지수 차이추정량 (Minimum Generalized Negative Exponential Disparity Estimator, MGNEDE)이 최대가능도추정량 (Maximum Likelihood Estimator, MLE)와 최소가중 헬링거거리추정량 (Minimum Blended Weight Hellinger Distance Estimator, MBWHDE)에 비해 오염된 정규모형에서 효율적이고 로버스트하다는 것을 모의실험을 통하여 확인하였다. 또한 세 가지 추정량들에 의해 추정된 모수들을 이용하여 판별하였을 때 자 추정량득의 판별율을 비교함으로써 오염된 정규모형에서 MLE의 대안으로 MGNEDE와 MBWHDE를 사용할 수 있음을 보였다.

  • PDF

Minimum Variance Unbiased Estimation for the Maximum Entropy of the Transformed Inverse Gaussian Random Variable by Y=X-1/2

  • Choi, Byung-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.657-667
    • /
    • 2006
  • The concept of entropy, introduced in communication theory by Shannon (1948) as a measure of uncertainty, is of prime interest in information-theoretic statistics. This paper considers the minimum variance unbiased estimation for the maximum entropy of the transformed inverse Gaussian random variable by $Y=X^{-1/2}$. The properties of the derived UMVU estimator is investigated.

Minimum Statistics-Based Noise Power Estimation for Parametric Image Restoration

  • Yoo, Yoonjong;Shin, Jeongho;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.2
    • /
    • pp.41-51
    • /
    • 2014
  • This paper describes a method to estimate the noise power using the minimum statistics approach, which was originally proposed for audio processing. The proposed minimum statistics-based method separates a noisy image into multiple frequency bands using the three-level discrete wavelet transform. By assuming that the output of the high-pass filter contains both signal detail and noise, the proposed algorithm extracts the region of pure noise from the high frequency band using an appropriate threshold. The region of pure noise, which is free from the signal detail part and the DC component, is well suited for minimum statistics condition, where the noise power can be extracted easily. The proposed algorithm reduces the computational load significantly through the use of a simple processing architecture without iteration with an estimation accuracy greater than 90% for strong noise at 0 to 40dB SNR of the input image. Furthermore, the well restored image can be obtained using the estimated noise power information in parametric image restoration algorithms, such as the classical parametric Wiener or ForWaRD image restoration filters. The experimental results show that the proposed algorithm can estimate the noise power accurately, and is particularly suitable for fast, low-cost image restoration or enhancement applications.

Design of Minimum and Maximum Control Charts under Weibull Distribution (와이블분포하에서의 최소값 및 최대값 관리도의 설계)

  • Jo, Eun-Kyung;Lee, Minkoo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.6
    • /
    • pp.521-529
    • /
    • 2015
  • Statistical process control techniques have been greatly implemented in industries for improving product quality and saving production costs. As a primary tool among these techniques, control charts are widely used to detect the occurrence of assignable causes. In most works on the control charts it considered the problem of monitoring the mean and variance, and the quality characteristic of interest is normally distributed. In some situations monitoring of the minimum and maximum values is more important and the quality characteristic of interest is the Weibull distribution rather than a normal distribution. In this paper, we consider the statistical design of minimum and maximum control charts when the distribution of the quality characteristic of interest is Weibull. The proposed minimum and maximum control charts are applied to the wind data. The results of the application show that the proposed method is more effective than traditional methods.