• Title/Summary/Keyword: Minimum quantity lubrication

Search Result 38, Processing Time 0.029 seconds

Analysis of computational fluid dynamics on design of nozzle for integrated cryogenic gas and MQL(minimum quantity lubrication) (극저온 가스와 MQL(minimum quantity lubrication)의 복합 분사를 위한 하이브리드 노즐 설계에 관한 전산유체역학 해석)

  • Song, Ki-Hyeok;Shin, Bong-Cheol;Yoon, Gil-Sang;Ha, Seok-Jae
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.41-47
    • /
    • 2019
  • In conventional machining, the use of cutting fluid is essential to reduce cutting heat and to improve machining quality. However, to increase the performance of cutting fluids, various chemical components have been added. However, these chemical components during machining have a negative impact on the health of workers and cutting environment. In current machining, environment-friendly machining is conducted using MQL (minimum quantity lubrication) or cryogenic air spraying to minimize the harmful effects. In this study, the injection nozzle that can combined injecting minimum quantity lubrication(MQL) and cryogenic gas was designed and the shape optimization was performed by using computational fluid dynamics(CFD) and design of experiment(DOE). Performance verification was performed for the designed nozzle. The diameter of the sprayed fluid at a distance of 30 mm from the nozzle was analyzed to be 21 mm. It was also analyzed to lower the aerosol temperature to about 260~270K.

Numerical Analysis of Thermal Characteristics of a Milling Process of Titanium Alloy Using Nanofluid Minimum-Quantity Lubrication (티타늄 합금의 나노유체 극미량 윤활 밀링 공정 열특성에 관한 수치 해석 연구)

  • Kim, Young Chang;Kim, Jin Woo;Kim, Jung Sub;Lee, Sang Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.253-258
    • /
    • 2017
  • This paper presents a numerical study on the thermal characteristics of a milling process of titanium alloy with nanofluid minimum-quantity lubrication (MQL). The computational fluid dynamics (CFD) approach is introduced for establishing the numerical model for the nanofluid MQL milling process, and estimated temperatures for pure MQL and for nanofluid MQL using both hexagonal boron nitride (hBN) and nanodiamond particles are compared with the temperatures measured by thermocouples in the titanium alloy workpiece. The estimated workpiece temperatures are similar to experimental ones, and the model is validated.

INVESTIGATIONS ON DRILLING SCM 440 STEEL WITH ELECTRO STATIC LUBRICANTION (ESL) SYSTEM

  • Reddy, N. Suresh Kumar;Jeon, Kang-Min;Yang, Min-Yang
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1010-1015
    • /
    • 2008
  • The rapid wear rate of cutting tools due to high cutting temperature is a critical problem to be solved in machining of hardened steel. Application of cutting fluid influences the performance of machining because of its lubrication and cooling actions. But, the environmental concerns call for the reduced use of cutting fluids in machining operations. Near-dry machining such as minimum quantity lubrication is regarded as one of the solutions to this difficulty. In the present work, cutting fluid was applied as a high velocity jet at the machining zone continuously at an extreme low rate using a fluid application system developed namely Electro Static Lubrication (ESL) during drilling of hardened steel. The performance of ESL has been compared with that of dry and MQL (minimum quantity lubrication) machining.

  • PDF

Experimental Characterization of Turning Process of Titanium Alloy Using Cryogenic Cooling and Nanofluid Minimum Quantity Lubrication (극저온 냉각 및 나노유체 극미량 윤활을 적용한 티타늄 합금의 선반 절삭가공 특성에 관한 연구)

  • Kim, Jin Woo;Kim, Jung Sub;Lee, Sang Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.3
    • /
    • pp.185-189
    • /
    • 2017
  • Recently, titanium alloys have been widely used in aerospace, biomedical engineering, and military industries due to their high strength to weight ratio and corrosion resistance. However, it is well known that titanium alloys are difficult-to-cut materials because of a poor machinability characteristic caused by low thermal conductivity, chemical reactivity with all tool materials at high temperature, and high hardness. To improve the machinability of titanium alloys, cryogenic cooling with LN2 (Liquid Nitrogen) and nanofluid MQL (Minimum Quantity Lubrication) technologies have been studied while turning a Ti-6Al-4V alloy. For the analysis of turning process characteristics, the cutting force, the coefficient of friction, and the surface roughness are measured and analyzed according to varying lubrication and cooling conditions. The experimental results show that combined cryogenic cooling and nanofluid MQL significantly reduces the cutting forces, coefficients of friction and surface roughness when compared to wet condition during the turning process of Ti-6Al-4V.

A Study on the Optimal Cutting Condition in Boring using MQL System (MQL장치를 이용한 보링 가공시 최적절삭조건에 관한 연구)

  • Han, Dong-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.82-87
    • /
    • 2011
  • Lubrication has an important role to reduce frictional forces and temperature between cutting chips and the face of a tool. However, it has harmful effects to workers' health and working environment. The purpose of this thesis is to find cutting conditions through the quality analysis in boring for SM45C steel using MQL(Minimum Quantity Lubrication). Machining process is super drill, tip drill, end mill and boring in order. Experimental factors of boring and the quantity of mist air are properly selected. With the analysis of experimental data, this thesis shows that boring with MQL improves the surface roughness when spindle speed is 934rpm or feeding speed is 74mm/min.

Environmentally-Conscious Lubrication for Superfinishing

  • Malkin, Stephen;Lee, Jongchan;Masurkar, Sameer;Hickok, Evan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.5-14
    • /
    • 2003
  • Cutting fluids used for superfinishing are usually mineral based oils With sulfur and chlorine additives. These cutting fluids are an environmental hazard and can adversely affect the health of personnel on the shop floor. The present investigation was undertaken to explore the possible alternative use of environmentally-conscious cutting fluids for superfinishing. Unlike mineral oils, these environmentally-conscious cutting fluids are biodegradable and non-hazardous. Experiments were conducted for testing an ester oil manufactured by Accu-Lube applied in miniscule amounts using the Minimum Quantity Lubrication (MQL) technique. A significant improvement in stock removal was found with the 6 stones tested. The specific energy values associated with the process were also significantly lower than those obtained previously with conventional straight oils and the water based synthetic fluid, indicative of better lubrication, while the surface roughness was comparable. These tests prove that MQL with ester oils can be a very effective environmentally-conscious alternative to conventional straight oils.

  • PDF

Design optimization for analysis of surface integrity and chip morphology in hard turning

  • Dash, Lalatendu;Padhan, Smita;Das, Sudhansu Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.561-578
    • /
    • 2020
  • The present work addresses the surface integrity and chip morphology in finish hard turning of AISI D3 steel under nanofluid assisted minimum quantity lubrication (NFMQL) condition. The surface integrity aspects include microhardness, residual stress, white layer formation, machined surface morphology, and surface roughness. This experimental investigation aims to explore the feasibility of low-cost multilayer (TiCN/Al2O3/TiN) coated carbide tool in hard machining applications and to assess the propitious role of minimum quantity lubrication using graphene nanoparticles enriched eco-friendly radiator coolant based nano-cutting fluid for machinability improvement of hardened steel. Combined approach of central composite design (CCD) - analysis of variance (ANOVA), desirability function analysis, and response surface methodology (RSM) have been subsequently employed for experimental investigation, predictive modelling and optimization of surface roughness. With a motivational philosophy of "Go Green-Think Green-Act Green", the work also deals with economic analysis, and sustainability assessment under environmental-friendly NFMQL condition. Results showed that machining with nanofluid-MQL provided an effective cooling-lubrication strategy, safer and cleaner production, environmental friendliness and assisted to improve sustainability.

Experimental Study on Meso-Scale Milling Process Using Nanofluid Minimum Quantity Lubrication (나노유체를 이용한 메소스케일 밀링 가공 특성에 관한 실험적 연구)

  • Lee, P.H.;Nam, T.S.;Li, Chengjun;Lee, S.W.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1493-1498
    • /
    • 2010
  • This paper present the characteristics of micro- and meso-scale milling processes in which compressed cold air, minimum quantity lubrication (MQL) and $MoS_2$ nanofluid MQL are used. For process characterization, the microand meso-scale milling experiments are conducted using desktop meso-scale machine tool system and the surface roughness is measured. The experimental results show that the use of compressed chilly air and nanofluid MQL in the micro- and meso-scale milling processes is effective in improving the surface finish.

Analysis of Ring Pack Lubrication

  • Lee, Jae-Seon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.928-934
    • /
    • 2000
  • This paper describes a method developed for the simulation of ring pack lubrication characteristic in an internal combustion engine. In general, the quantity of oil supply for piston ring lubrication may be insufficient in filling the entire volume formed at the interference between the piston ring and the cylinder liner. Thus the oil starvation condition should be considered in analyzing piston ring lubrication. In order to reasonably estimate the amount of oil left over on the cylinder liner, the flow rate at the posterior portion of the interface should be calculated with an adequate boundary condition that confirms flow continuity condition. In this analysis, oil starvation and open-end boundary conditions are considered at the inlet and outlet of the piston rings. The lubrication characteristic of each piston ring is obtained by an iterative method with sequential steps. It is revealed that piston rings are operated under oil starvation in most operating cycles and the result under these conditions are quite different from that with the fully-flooded assumption.

  • PDF