• Title/Summary/Keyword: Minimum cost

Search Result 1,406, Processing Time 0.027 seconds

Complete Time Algorithm for Stadium Construction Scheduling Problem

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.81-86
    • /
    • 2015
  • This paper suggests heuristic algorithm with linear time complexity to decide the normal and optimal point at minimum loss/maximum profit maximum shortest scheduling problem with additional loss cost and bonus profit cost. This algorithm computes only the earliest ending time for each node. Therefore, this algorithm can be get the critical path and project duration within O(n) time complexity and reduces the five steps of critical path method to one step. The proposed algorithm can be show the result more visually than linear programming and critical path method. For real experimental data, the proposed algorithm obtains the same solution as linear programming more quickly.

Test Sequence Generation Using Multiple Unique State Signature(MUSS)

  • Jung, Yoon-Hee;Hong, Beom-Kee
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.43-47
    • /
    • 1997
  • A procedure presented in this paper generates test sequences to check the conformity of an implementation with a protocol specification, which is modeled as a deterministic finite state machine (FSM). Given a FSM, a common procedure of test sequence generation, first, constructs a directed graph which edges include the state check after each transition, and produces a symmetric graph G* from and, finally, finds a Euler tour of G*. We propose a technique to determine a minimum-cost tour of the transition graph of the FSM. The proposed technique using Multiple Unique State Signature (MUSS) solves an open issue that one MUIO sequence assignment may lead to two more edges of unit cost being replicated to from G* while an optimal assignment may lead to the replication of a single edge of high cost. In this paper, randomly generated FSMs have been studied as test cases. The result shows that the proposed technique saves the cost 4∼28% and 2∼21% over the previous approach using MUIO and MUSP, respectively.

  • PDF

Optimal capacity and allocation of distributed generation by minimum operation cost of distribution system (배전계통 운영비용의 최소화에 의한 분산전원의 최적용량과 위치결정)

  • Park, Jung-Hoon;Bae, In-Su;Kim, Jin-O;Shim, Hun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.360-362
    • /
    • 2003
  • In operation of distribution system, DGs(Distributed Generations) are installed as an alternative of extension and establishment of substations, transmission and distribution lines according to increasing power demand. Optimal capacity and allocation of DGs improve power quality and reliability. This paper proposes a method for determining the optimal number, size and allocation of DGs needed to minimize operation cost of distribution system. Capacity of DGs for economic operation of distribution system can be estimated by the load growth and line capacity during operation planning duration. DG allocations are determined to minimize total cost with failure rate and annual reliability cost of each load point using GA(Genetic Algorithm).

  • PDF

Design optimization of reinforced concrete structures

  • Guerra, Andres;Kiousis, Panos D.
    • Computers and Concrete
    • /
    • v.3 no.5
    • /
    • pp.313-334
    • /
    • 2006
  • A novel formulation aiming to achieve optimal design of reinforced concrete (RC) structures is presented here. Optimal sizing and reinforcing for beam and column members in multi-bay and multistory RC structures incorporates optimal stiffness correlation among all structural members and results in cost savings over typical-practice design solutions. A Nonlinear Programming algorithm searches for a minimum cost solution that satisfies ACI 2005 code requirements for axial and flexural loads. Material and labor costs for forming and placing concrete and steel are incorporated as a function of member size using RS Means 2005 cost data. Successful implementation demonstrates the abilities and performance of MATLAB's (The Mathworks, Inc.) Sequential Quadratic Programming algorithm for the design optimization of RC structures. A number of examples are presented that demonstrate the ability of this formulation to achieve optimal designs.

Cost optimization of high strength concretes by soft computing techniques

  • Ozbay, Erdogan;Oztas, Ahmet;Baykasoglu, Adil
    • Computers and Concrete
    • /
    • v.7 no.3
    • /
    • pp.221-237
    • /
    • 2010
  • In this study 72 different high strength concrete (HSC) mixes were produced according to the Taguchi design of experiment method. The specimens were divided into four groups based on the range of their compressive strengths 40-60, 60-80, 80-100 and 100-125 MPa. Each group included 18 different concrete mixes. The slump and air-content values of each mix were measured at the production time. The compressive strength, splitting tensile strength and water absorption properties were obtained at 28 days. Using this data the Genetic Programming technique was used to construct models to predict mechanical properties of HSC based on its constituients. These models, together with the cost data, were then used with a Genetic Algorithm to obtain an HSC mix that has minimum cost and at the same time meets all the strength and workability requirements. The paper describes details of the experimental results, model development, and optimization results.

Optimal Transmission Expansion Planning Considering the Uncertainties of Power Market (전력시장 불확실성을 고려한 최적 송전시스템 확장계획)

  • Son, Min-Kyun;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.560-566
    • /
    • 2008
  • Today, as the power trades between generation companies and power customer are liberalized, the uncertainty level of operated power system is rapidly increased. Therefore, transmission operators as decision makers for transmission expansion are required to establish a deliberate investment plan for effective operations of transmission facilities considering forecasted conditions of power system. This paper proposes the methodology for the optimal solution of transmission expansion in deregulated power system. The paper obtains the expected value of transmission congestion cost for various scenarios by using occurrence probability. In addition, the paper assumes that increasing rates of loads are the probability distribution and indicates the location of expanded transmission line, the time for transmission expansion with the minimum cost for the future by performing the Montecarlo simulation. To minimize the investment risk as the variance of the congestion cost, Mean-Variance Markowitz portfolio theory is applied to the optimization model by the penalty factor of the variance. By the case study, the optimal solution for transmission expansion plan considering the feature of market participants is obtained.

A Cost-aware Scheduling for Reservation-Based Long Running Transactions (예약기반 장기수행 변동처리를위한 비용인지 시간계획)

  • Lin, Qing;Pham, Phuoc Hung;Byun, Jeong Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.1248-1251
    • /
    • 2011
  • Web Service technologies make the automation of business activities that are distributed across multiple enterprises possible. Existing extended transaction protocols typically resort to compensation actions to regain atomicity and consistency. A reservation-based transaction protocol is proposed to reduce high compensation risk. However, for a serial long running transaction processing, the resource that is reserved in the early stage may be released due to resource holding time expires. Therefore, our analysis theoretically illustrates a scheduling scheme that tries to prevent the loss of resource holding as well as gain an optimized execution plan with minimum compensation cost. In order to estimate cost of different schedules, we set up a costing model and cost metric to quantize compensation risk.

The Sensitivity Comparison of Each Risk Factors Analysis on Renewable Energy and Other Generating Technologies (신재생 에너지와 기존 발전기술과의 투자리스크 요인별 민감도 비교)

  • Koh, Kyung-Ho;Park, Se-Ik
    • New & Renewable Energy
    • /
    • v.7 no.4
    • /
    • pp.10-17
    • /
    • 2011
  • Recently, electricity industry is facing high market uncertainty which has ever had and which increase risks in power market. In this study, we analyze risk factors such as discount rates, initial investment (overnight cost), plant factor, fuel cost, carbon price, etc, for the perspective of investor. For the analysis of risk factors, we used LCOE method. The results of this study show that renewable energy is more affected by plant factor and overnight cost than other risk factors. First, Renewable energy has higher proportion of overnight cost in the total investment than that of other technologies. Second, renewable energy is free of fuel cost and carbon price so plant factor is the most important factor, in other words, competitiveness of renewable energy depends on plant factor. Furthermore, we conducted economic feasibility of wind power and PV in domestic case study. The minimum requirement condition to get profitability is that plant factor 15% and overnight cost \6,000,000/kW and 26%, \2,200,000/kW for PV and Wind Power, respectively.

A Study on the Rectifying Inspection Plan & Life Test Sampling Plan Considering Cost (소비자 보호를 위한 선별형 샘플링 검사와 신뢰성 샘플링 검사의 최적설계에 관한 연구)

  • 강보철;조재립
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.1
    • /
    • pp.74-96
    • /
    • 2002
  • The objectives of this study is to suggest the rectifying sampling inspection plan considering quality cost. Limiting quality level(LQL) plans(also called LTPD plans) and outgoing quality(OQ) plans are considered. The Hald's linear cost model is discussed with and without a beta prior for the distribution of the fraction of nonconforming items in a lot. It is assumed that the sampling inspection is error free. We consider the design of reliability acceptance sampling plan (RASP) for failure rate level qualification at selected confidence level. The lifetime distribution of products is assumed to be exponential. MIL-STD-690C and K C 6032 standards provide this procedures. But these procedures have some questions to apply in the field. The cost of test and confidence level(1-$\beta$ risk) are the problem between supplier and user. So, we suggest that the optimal life test sampling inspection plans using simple linear cost model considering product cost, capability of environment chamber, environmental test cost, and etc. Especially, we consider a reliability of lots that contain some nonconforming items. In this case we assumed that a nonconforming item fail after environmental life test. Finally, we develope the algorithm of the optimal sampling inspection plan based on minimum costs for rectifying inspection and RASP. And computer application programs are developed So, it is shown how the desired sampling plan can be easily found.

Minimum life-cycle cost design of ice-resistant offshore platforms

  • Li, Gang;Zhang, Da-Yong;Yue, Qian-Jin
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.11-24
    • /
    • 2009
  • In China, the oil and natural gas resources of Bohai Bay are mainly marginal oil fields. It is necessary to build both ice-resistant and economical offshore platforms. However, risk is involved in the design, construction, utilization, maintenance of offshore platforms as uncertain events may occur within the life-cycle of a platform under the extreme ice load. In this study, the optimum design model of the expected life-cycle cost for ice-resistant platforms based on cost-effectiveness criterion is proposed. Multiple performance demands of the structure, facilities and crew members, associated with the failure assessment criteria and evaluation functions of costs of construction, consequences of structural failure modes including damage, revenue loss, death and injury as well as discounting cost over time are considered. An efficient approximate method of the global reliability analysis for the offshore platforms is provided, which converts the implicit nonlinear performance function in the conventional reliability analysis to linear explicit one. The proposed life-cycle optimum design formula are applied to a typical ice-resistant platform in Bohai Bay, and the results demonstrate that the life-cycle cost-effective optimum design model is more rational compared to the conventional design.