

제 36회 한국정보처리학회 추계학술발표대회 논문집 제 18권 제 2호 (2011. 11)

A Cost-aware Scheduling for Reservation-Based Long Running
Transactions

Lin Qing, Pham Phuoc Hung, Jeong Yong Byun

e-mail : qinglin9@gmail.com, hung205a2@gmail.com, byunjy@dongguk.ac.kr
Dept. of Computer Engineering, Dongguk University

예약기반 장기수행 변동처리를위한 비용인지 시간계획

림청, 팜폭헝, 변정용
동국대학교 전자계산학

Abstract

 Web Service technologies make the automation of business activities that are distributed across multiple
enterprises possible. Existing extended transaction protocols typically resort to compensation actions to regain
atomicity and consistency. A reservation-based transaction protocol is proposed to reduce high compensation risk.
However, for a serial long running transaction processing, the resource that is reserved in the early stage may be
released due to resource holding time expires. Therefore, our analysis theoretically illustrates a scheduling scheme
that tries to prevent the loss of resource holding as well as gain an optimized execution plan with minimum
compensation cost. In order to estimate cost of different schedules, we set up a costing model and cost metric to
quantize compensation risk.

1. Introduction

 The automation of business activities that are distributed
across multiple enterprises becomes possible with the advent
of the new generation of Internet-based technology, in
particular, Web Services. Business activities typically involve
related tasks that are loosely coupled and carried out over a
long period of time. The automation of business activities,
with direct computer-to-computer interactions and without
human involvement, can provide substantial speed
improvements and cost reductions for distributed enterprise
computing. [1]
 However, it is not pragmatic to apply conservative two
phase locking protocol in distributed organizations. Instead,
each Web Service is allowed to commit independently. If the
whole transaction fails for some reasons, compensation [2]
operations are invoked for the completed Web Services to
eliminate the effects that have been done. In case of this
situation, WS-BusinessActivity[3][4], one of WS-
Transaction components, is launched to handle long-duration,
ACID-relaxed transactions among loosely-coupled systems
and asynchronous communication. However, it is difficult
and expensive to resolve such inconsistencies, particularly
when the databases are spread across multiple enterprises, as
is the intention of Web Services. Some researchers have
proposed a reservation-based transaction protocol [4] to
coordinate business activities. In the reservation-based
protocol, an application has full control over the reservation
activity, as well as over how long the resource should be
reserved.
 However, those transaction protocols seldom consider
serial long running transaction processing. Due to complexity
of business activities, workflow is required to specify
execution order of distributed services. For example, with an
order processed in advance, can the vendor knows how many

products to be reserved for client, and then payment, logistics
could be arranged. Problem comes when logistics
arrangement takes a long time that vendor’s reservation
period expires, transactions are prone to be in an
inconsistence situation again, although a reservation-based
protocol is applied, for the reason that every enterprise
participating this activity is self-centered and selfish. A direct
solution for this problem is to complete immediately as long
as reservation time is out. But it is inadvisable when
compensation cost is likely to be generated. The criteria of
scheduling include reservation time constraints, a date flow
graph that represents resources consuming sequence, and a
quantitative compensation cost estimation. Our experiments
approve that execution of transactions following the
scheduling, enhances the performance of reservation-based
transaction management.
 The rest of paper is organized as following: in the 2nd
chapter we will discuss related studies. Then we will focus
on motivating scenario and discuss proposed method in the
3th chapter. System model, algorithm will be illustrated in
the 4th and 5th chapter. Paper will be concluded with
conclusion.

2. Related Work

[5][6] Compared with paper [5], in paper [6] the reservation-
based protocol but with an imposed time constraint is
proposed, which helps eliminate those side effects. Also,
concurrent conflicts detection is developed as well to
enhance performance. Moreover, the simulation integrates
this resource-centric approach into Service-Oriented
Architecture (SOA).
[7] In this paper, they try to explore issues with emphasis on
compensation-cost analysis based on two-phase locking
commit pattern. Their main contribution is providing a

- 1248 -

제 36회 한국정보처리학회 추계학술발표대회 논문집 제 18권 제 2호 (2011. 11)

formal for pricing the compensation cost of aborted
transactions and metrics and a framework for probabilistic
analysis. And in our paper, first we inherit this mathematical
method, and apply it to more complicated environment,
which is specifically designed for processing order
predetermined long running transactions. Second, we argue
the price-based compensation model and extend concept
consideration for compensation.
[8] This paper devises the algorithm for scheduling, which
maintains atomicity with minimum compensation cost and
satisfies temporal constraints as well. In contrast, we
concentrate on reservation deadline constraint for the sake of
reservation-based protocol, which is already proved to show
better performance than pure WS-BusinessActivity protocol.
Moreover, our purpose is to solve conflict between resource
holding time and minimum compensation cost.

3. Motivating Scenario

 We begin by using a simple example to show the
motivation scenario. Fig.1 illustrates a data flow graph (DFG)
of a distributed purchase and supply planning system, which
needs to consume services and gain resources from multiple
enterprises. In the graph, DFG is an essential element within
the high-level synthesis flow and represents a chain of
operations with data dependencies. For example, in our
scenario, Order Processing Service is performed earlier than
others. According to its results, Inventory Service updates
quantity in the database and Logistics Planning Service maps
out a suitable delivery plan through the knowledge of goods
type and destination location. Subsequently truck service is
called. And then Finance Service is to calculate the total fee
that customer should pay for and payment request is sent to
Bank Service immediately. This complex activity needs
transactional support to guarantee its atomicity. Specifically,
for products, payment and truck resource acquisition (red
color in Fig.1), either all of them complete successfully or
none of them do. Under the circumstance of reservation-
based protocol, only when three positive reservation
responses arrive will the coordinator issue “complete”
command to all the providers.

(Fig.1) DFG of a distributed purchase and supply planning system

 What’s more, it is necessary for every service provider
imposes a time constraint for reservation according to paper
[6]. But this time constraint brings problem. Take our
purchase and supply system for example, items that have
already been reserved from inventory may be released prior
to the overall transaction reservation phase is able to end.
Suppose Logistics Planning Service and Truck Service take
longer time than usual so that Truck Service can not finish
reservation but Inventory Service’s period for resource

holding expires. As a sequence, transaction is forced into an
inconsistent position again. This disadvantage is inevitable if
we want to popularize reservation-based protocol for
transaction management. Certainly, a direct solution is to
complete as soon as time is out. But what if supplier requires
penalty for cancelling a completed purchase, meanwhile
succeeding tasks are actually prone to fail? Eventually,
customer probably needs to pay extra money for a failed
purchase. Let us suppose that the expected delivery day
happens to be on busy season, e.g. Charismas Eve, and
failure rate is relatively high. Under this circumstance,
delaying item reservation from Inventory Service until Truck
Service is successfully reserved could be a better choice.
 From this example, we can see that for the serial long
running transactions, simple reservation may force
transaction to inconsistency or considerable compensation
cost. Therefore, scheduling to seek the right time of
distributed services’ reservation and completion is our main
purpose in this paper.

4. System Model

 In our reservation protocol, except for read or
computation only tasks, each task within a business activity
is executed as two subtasks. The first subtask involves an
explicit reservation of resources according to the business
logic. The second subtask involves the confirmation or a
cancellation of the reservation. Compared with other
transaction models, our novelty is that execution dependency
only imposes serial restrictions on services’ reservations,
whereas completions, which are also seen as commitments
from distributed databases, can be rescheduled to pursue an
optimized execution plan. In addition, some services. Next is
the genetic modeling for the background and the problem we
are going to solve.

4.1 Conversation Model of Reservation-based Protocol

(Fig. 2) The message sequence diagram of Reservation-

based Protocol

In this model, message transfer delay is neglected to simplify
computation.
1. For j=1 to n, at the time ݎݐ௝ Coordinator invokes the

Participant j (Service j) with a RESERVE message,
which also demands that the reply from Participant j
shall arrive at Coordinator before time ݎݐ௝+r(j), and r(j)
is the relative timeout by which Coordinator waits for
the reply.

- 1249 -

제 36회 한국정보처리학회 추계학술발표대회 논문집 제 18권 제 2호 (2011. 11)

2. On receipt of the RESERVE request, participant j should
respond with a RESERVED after a successful
computation and reservation of request. Otherwise, it
answers FAIL.

3. Over some period of time, a COMPLETE command is
issued to Participant j at the time of ݐ ௝ܿ. And reply from
Participant j should arrive after the period of c(j).
However, we should mention that starting to convert
participant j ’state from reservation to completion should
be in the condition that resource is still in reservation,
which means ݐ ௝ܿ ൑ ݎݐ௝+ r(j) + Dr(j). Here, Dr(j) is the
time constraint for reservation that is declared by
Participant j.

4. In case of failure from other participants, a
COMPENSATE message is issued to participant j.

4.2 Compensation Mechanism
 In SOA, the compensating operation is usually another
service (e.g. a debiting service) that cancels the effect of the
already completed service (e.g. a crediting service). It is
worth noting that the compensation logic cannot be
automatically generated and therefore relies upon
application-specific business logic.
 In some cases, an operation cannot be easily
compensated for, such as manufacturing an item, and
compensating operation can charge the customer a
cancellation fee and offer to sell the item to other parties. [2]
However, many researches contribute to the compensation
development in SOA, few of them study about costs resulted
from cancellation. This cost could be real and precise price
that is quoted by vendors, or it could represent compensation
complexity for individual services. In this paper, we will not
explain how to price compensation cost, for the reason that it
must be discussed in a living example. But we do provide a
cost model based on the common knowledge about
compensation penalty, by which can we develop our cost-
aware optimization scheduling.
 To make our work more general, we assume that the
compensation operation of a service can be invoked even if
the service is still being executed. Compensation cost model
is given as follows:

Cost (௝ܵ , ,݀ݐ = (ܿݐ

 Here, td is the time Coordinator decides to compensate;
ݐ ௝ܿ is the time that sending Participant j COMPLETE
request, and c(j) is the period between request and response
from Participant j. ߙ௝ and ߚ௝ are non-negative penalty
coefficients for Participant j’s completing and completed
state respectively. The reason we use here two penalty
coefficients is that the cost to undo the effects after a service
has completed is generally greater than that when the service
is still being executed.

4.3 Transactional QoS Definition
 In this paper, we are interested in properly scheduling
reservation and completion of component services in terms
of QoS criteria and constraints to obtain a minimized
compensation cost. We consider four generic quality criteria

for elementary services.
Execution Duration. Execution duration measures the
expected delay in seconds or minutes even hours between the
moment when a request is sent and the moment when the
result are received. In our paper, both reservation duration r(j)
and completion duration c(j) are required for service j in the
environment of Reservation-based protocol.
Success Execution rate. It is the probability that Participant
j responds correctly to the Coordinator. In our paper, both
reservation success rate ݍ௥(j) and completion success rate
 ௖(j) are required for service j because of Reservation-basedݍ
protocol. ݍ௥(j) denotes the resource acquire rate and ݍ௖(j) is
the probability that the service functions correctly and
consistently provide the same service quality. That’s
reliability of a service.
Execution and compensation price. From texts above, we
already define a cost function for service j. It is a linear
equation with two Coefficients. ߙ௝ is the coefficient for
modeling execution cost, and ߚ௝ is used for compensation
cost after service j successfully completes.
Reservation Time Constraint. Participant j imposes time
constraint Dr(j) for resource reservation, which is one of
the main factors we will consider for our scheduling.

4.4 Compensation Cost Mathematical Evaluation
 The cost is produced when a failure occurs. So basically
we measure cost for each schedule by accumulating potential
cost from every individual moment during execution. Thus
firstly, calculate cost at time t. ௖ܲ(t) is the success probability
before time t, and ௙ܲ(t) is the failure probability at time t.
cost(௜ܵ) is the cost for a successful service i to compensate,
and n is the number of completed services. Then cost at time
t is calculated according to compensation model defined in
4.2.

C (t) = ௖ܲ(t) ൈ ௙ܲ(t) ൈ ∑ ሺݐݏ݋ܿ ௜ܵሻ ௡
௜ୀଵ (1)

 Final total cost is the integral of C (t) from starting point to
the termination of transaction with respect to t. This is
represented in the formula below, and Ts, Tf denote start
point and termination point of transaction.

׬ ݐሻ݀ݐሺܥ
்௙

்௦ (2)

4.5 Simple Example
 In this part, QoS parameters that are discussed above are
assigned to the services in motivating scenario, which are
listed in Table 1, and through this vivid example, it is easier
to understand how effectively and necessarily cost-aware
scheduling contributes reducing compensation cost.

<Table 1> QoS Example for Motivating Scenario

 We should notice only database associated services are
scheduled, for the reason that only resource consuming
operations require cost for compensation. So Table 1 does
not include other computational services. Via intuitive
analysis of Table 1, we can see Truck service has lower

- 1250 -

제 36회 한국정보처리학회 추계학술발표대회 논문집 제 18권 제 2호 (2011. 11)

success rate and lower cost coefficients compared with
Inventory service. It is reasonable because truck is a kind of
scarce resource which is different from products that can be
increased effortless if market demands expand suddenly.
Moreover, Payment service has highest success rate while
most expensive compensation cost for the sake of bank
system’s reliability and complexity.

Let’s see a natural schedule in Fig.3. The overall
transaction experiences two fixed phases that we can see
from Fig.3. The blue bar denotes reservation execution, and
the orange one denotes completion execution. The white
background represents deadline for reservation.

In case of aforementioned reservation time constraint
problem, we assume transaction coordinator completes
Inventory Service in advance, at time 13, with an aim to
prevent the resource release. Fig.4 shows a cost aware
optimized example. Apparently a rescheduled transaction
gets rid of overall Reservation Phase and Completion Phase,
which means executions of each individual service are
pipelined to pursue cost optimization. Looking inside of the
second schedule, Inventory Service is postponed behind
Truck Service, which is prone to fail. Meanwhile, Bank
Payment Service is scheduled at the rear of transaction since
it is a high compensation cost service. Besides, mathematical
evaluation of these two services is conducted as well. The
result undoubtedly demonstrates the second schedule helps
save cost more than 90% compared with nature scheduling
according to formula that is defined above.

(Fig. 3) Natural Schedule Example

(Fig. 4) A Cost-aware Optimized Example

5. Scheduling Algorithm

 Backtracking search [9] is our algorithm to solve this
problem, which is used for a depth-first search that chooses
values for one variable at a time and backtracks when a
variable has no legal values left to assign. The basic idea is
that, in the first round, assign reservation start time for one

service at a time. Second round is the assignment of
completion start time for each service, until all the services
know when they should start to reserve and complete.
 And then, a schedule is found, the cost function is applied
to calculate the expected compensation cost and this value
will be recorded. After all the cases are searched and tried,
eventually the application is able to get an optimized
schedule via comparison among those estimated results.

6. Conclusion and Future Work

 The main content of this paper is devoted to studying
compensation cost optimization by proper scheduling at the
same time without violating reservation time constraint when
reservation-based protocol is applied. A quantitative model of
cost evaluation and a backtracking algorithm is raised in this
paper to solve this problem.
 However, plain backtracking is not effective for large
problem. For example, we increase service number in one
transaction, or cut time by a smaller time unit. This will
definitely enlarge the scale of problem. So domain-specific
heuristic functions derived from our knowledge of the
problem is able to help reduce search space greatly. This is
our aim for future work.

Reference

[1]Sandeep Chatterjee, James Webber, Developing Enterprise
Web Services: An Architect's Guide. Prentice Hall PTR, 2003,
pp. 272.
[2] Biswas, Debmalya, “Compensation in the world of Web
Service Composition”, Semantic Web Services and Web
Process Composition Volume 3387, Springer Berlin
Heidelberg, 2005.
[3]OASIS Web Service Business Activity (WS-
BusinessActivity), found at: http://docs.oasis-open.org/ws-
tx/wstx-wsba-1.1-spec.pdf
[4]OASIS Web Service Coordination (WS-Coordination)
Version1.2, http://docs.oasis-open.org/ws-tx/wstx-wscoor-
1.2-spec-os.pdf, 2009.
[5]Wenbing Zhao, Louise E. Moser P.M.Melliar-Smith, “A
Reservation-Based Extended Transaction Protocol”, IEEE
Transactions on Parallel and Distributed Systems, 2008.
[6]LinQing, Aziz Nasridinov, Pham Phuoc Hung , Jeong
Yong Byun , “An Improved Reservation-based Protocol for
Timely Web Service Transactions”, Journal of KIISE:
Computing Practices and Letters, Volumn 17, 2011.
[7] Haitao Yang, Zhenghua Wang, Qinghua Deng,
Scheduling optimization in coupling independent services as
a Grid transaction, Journal of Parallel and Distributed
Computing, Volume 68, Issue 6, June 2008
[8] Liu, An, Liu, Hai, Li, Qing, Huang, Liu-Sheng, Xiao
Ming-Jun, “Constraints-Aware Scheduling for Transactional
Services Composition”, Journal of Computer Science and
Technology, Volume 24, Issue 4, Springer Boston, 2009.
[9]Stuart Jonathan Russell, Peter Norvig, “Artificial
intelligence: a modern approach”, Prentice Hall, 2010,
pp.137-155.

- 1251 -

