• Title/Summary/Keyword: Minimum Speed

Search Result 1,159, Processing Time 0.03 seconds

Selection of pulse number and modulation index for minimum speed ripple in trapezoidal CSI-PWM (Trapezoidal PWM 전류원 인버터에서 최소 Speed Ripple을 위한 펄스 수 및 변조도의 결정)

  • Kwon, Woo-Hyeon;Goo, Bon-Ho;Lee, Chi-Hwan;Lee, Chang-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.127-129
    • /
    • 1988
  • Square-wave current source inverter drives suffer from torque pulsation and speed variation at low speed. Attempts to minimize these problems, CSI PWM strategies have been reported. It is shown that these PWM strategies are based on unnecessarily restrictive modulation laws. In this paper, trapezoidal PWM strategy for CSI is investigated theoratically by double fourier series and we proposed Harmonic Speed ripple Factor(HSF) that is independent of motor parameters and load conditions. Speed ripple are considered in T-PWM and square wave inverter by HSF. We obtain modulation index(M) and carrier ratio (CR) for minimum speed ripple.

  • PDF

Variation of Sound Speed in the Tsushima Warm Current Region of the East Sea (동해의 쓰시마난류 분포역에서 음속의 변동)

  • LEE Chung Il;CHO Kyu Dae;KIM Sang Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.2
    • /
    • pp.170-177
    • /
    • 2003
  • This study is to analyze the influence of the Tsushima Warm Current (TWC) on the variation of sound speed in the southern part of the East Sea. Sound speed is calculated by method of Chen and Millero (1977:, based on the CTD data measured in June of 1996. Sound speed in the central part of the TWC is about $45ms^{-1}$ more fast than that in the other regions without the TWC. Sound speed minimum layer (SML) in the TWC region exists between loom and 341 m, while it exists between 260m and 290m in the non-TWC region. SML distributes along the path of TWC over continental shelf in the coastal waters of Japan.

The Self-employed and Preference for the Speed of Minimum Wage Hike -Focused on the Moderating Effect of Income Class- (자영업자와 최저임금 인상 속도에 대한 선호 -소득 계층의 조절효과를 중심으로-)

  • Lee, Jae-Wan
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.4
    • /
    • pp.403-412
    • /
    • 2019
  • There has been a lively debate between self-employed and wage workers on the speed of minimum wage hikes. Minimum wage is a redistributive policy that evokes confrontation and conflict whereby individuals' views on the policy coincide with their material self-interest. With this in mind, the researcher analyzed whether an individual's labor market status was explanatory to his/her view on the speed of minimum wage hike. Moreover, in light of the likelihood that the varying degree to which self-employed can afford minimum wage hike affects their differential preferences for the policy, the researcher attempted to identify whether there was a moderation effect of income class on the relationship. In the actual analysis, the researcher investigated employment policy survey dataset using a multinomial logit model. The results suggest that, among self-employed, 'gradual increase' and 'rapid increase' of minimum wages are less preferred $vis-{\grave{a}}-vis$ 'minimal increase,' which is the reference. As to the moderation effect, when a self-employed has a middle-income class status, his/her negative preference for the policy is likely to be attenuated. One implication of this study is that subsidizing self-employed small business owners, who are most dissatisfied with the current speed at which minimum wages rise, would be an effective prescription on reducing social conflicts.

A Need of Management of Horizontal Alignment Design at Rural Roads (지방부 도로에서 평면선형 설계관리의 필요성)

  • Kim, Yong-Seok;Cho, Won-Bum
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.25-31
    • /
    • 2010
  • Road design guideline provides the directions on how to design a road alignment based on design speed, and this guideline has a design expectation in that design speed is supposed to be equal to the operating speed of drivers. Horizontal curve design is also based on design speed, and minimum radius is derived based on the drivers comfort while negotiating the curve. However, side friction reflecting drivers comfort is lower than a physical friction measured on wet road surface, therefore, it is reasonable to regard the criterion on minimum radius has a safety margin. Futhermore, the practical preference of choosing the larger radius than minimum leads to a noticeable gap between design speed and operating speed, so links to the violation of design expectation implicated in the guideline. In order to review this assumption, friction and operating speed at rural roads was measured and observed. As the results, a safety margin brought out by the gap between comfort-based friction and measured friction is qualitatively derived. Also, the gap between design speed and operating speed presumably caused by the safety margin and practical preference is analysed. By this, it is suggested that current design guideline should provides not only the minimum radius but also the management of road alignment design to minimize the gap between the design speed and operating speed.

A study on automatic selection of optimal cutting condition on machining in view of economics (기계가공시 분당가공비를 고려한 최적 절삭 조건에 관한 연구)

  • 이길우;이용성
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.113-126
    • /
    • 1992
  • Recently the multi-kind, small-amount manufacturing system has been replacing the mass manufacturing system, and domestic machining inustry also is eager to absorb the new technology because of its high productivity and cost reduction. The optimization of the cutting condition has been a vital problem in the machining industry, which would help increase the productivity and raise the international competitiveness. It is intended in this study to investigate the machining costs per unit time which is essential to the analysis of the optimal cutting condition, to computer the cutting speed that lead to the minimum machining costs and the maximum production to suggest the cutting speed range that enables efficient speed cutting, and to review the machining economy in relation to cutting depth and feed. Also considered are the optimal cutting speed and prodution rated in rrelation with feed. It is found that the minimum-cost cutting speed increases and the efficient cutting speed range is reduced as machining cost per unit time increases since the cutting speed for maximum production remains almost constant. The machining cost is also lowered and the production rate increases as the feed increases, and the feed should be selected to satisfy the required surface roughness. The machining cost and production rate are hardly affected by the cutting depth if the cutting speed stays below 100m/min, however, they are subject to change at larger cutting depth and the high-efficient speed range also is restricted. It can be established an adaptive optimal cutting conditions can be established in workshop by the auto-selection progam for optimal operation. It is expected that this method for choosing the optimal cutting conditions might contribute to the improvement of the productivity and reduced the cost. It is highly recommended to prepare the optimal cutting conditionthus obtained for future use in the programing of G-function of CNC machines. If proper programs that automatically select the optimal cutting conditions should be developed, it would be helpful to the works being done in the machine shops and would result in noticeable production raise and cost reduction.

  • PDF

Continuous Tool-path Generation for High Speed Machining

  • Lee, Eung-Ki;Hong, Won-Pyo;Park, Jong-Geun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.31-36
    • /
    • 2002
  • A continuous tool-path, that is to cut continuously with the minimum number of cutter retractions during the cutting operations, is developed in order to minimise the fluctuation of cutting load and the possibility of chipping on the cutting edge in HSM (high-speed machining). This algorithm begins with the offset procedure along the boundary curve of the sculptured surface being machined. In the of offset procedure, the offset distance is determined such that the scallop height maintains a constant roughness to ensure higher levels of efficiency and quality in high-speed machining. Then, the continuous path is generated as a kind of the diagonal curve between the offset curves. This path strategy is able to connect to neighbor paths without cutter retractions. Therefore, the minimum tool retraction tool-path can be generated And, it allows the sculptured surface incorporating both steep and flat areas to be high-speed machined.

Pressure Control of Hydraulic Cylinder using high Speed On-Off Solenoid Valve (고속 온-오프 전자 밸브를 사용한 유압 실린더의 압력 제어)

  • 김상수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.69-78
    • /
    • 1999
  • In this study a new pattern of pressure control of hydraulic cylinder using high speed On-Off solenoid valve in the electro-hydraulic system has been suggested. The control valve is 3-way high speed On-Off solenoid valve which is operated by PWM(Pulse Width Modulation)control signal. The high speed On-Off solenoid valve has a tendency to induce severe pressure fluctuation in the hydraulic actuator so it has not been used for the purpose of closed loop control with direct pres-sure feedback. In this study closed loop control with direct pressure feedback is enabled by using a digital filter which has linear minimum mean square filter algorithm. Through some experiments it is confirmed that stable pressure control can be realized by the proposed control technique.

  • PDF

A Study on the Flat Surface Zone of the Flexible Disk Grinding System (유연성 디스크 연삭가공 평면가공구간에 대한 연구)

  • Yoo, Song-Min
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.125-132
    • /
    • 2007
  • Inherent dynamic interaction between flexible disk and workpiece creates partially non-flat surface profile. A flat zone was defined using minimum depth of engagement. Several key parameters were defined to explain the characteristics of the zone. Process conditions including disk rotation speed, initial depth of cut and feed speed were varied to produce product profile database. Correlation between key factors was examined to find the characteristic dependencies. Trends of key parameters were displayed and explained. Higher flat zone ratio was observed for lower depth of cut and higher disk rotation speed. Ratio of minimum depth of cut against target depth of cut increased for higher feed speed and disk rotation speed but was insensitive to the depth of cut variation. The process transition was visualized by continuously displaying instantaneous orientation of the deflected disk and the location of key parameters were clearly marked for comparison.

A Study on the Wear Mechanism of the Alumina Ceramics for the Wear of STB2 (베어링 강(STB2)의 마멸에 미치는 알루미나 세라믹스의 마멸기구)

  • Nam, Joon-Woo;Jun, Tae-Ok;Jin, Dong-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.62-72
    • /
    • 1995
  • The present study was undertaken to investigate the dry wear mechanism of the alumina ceramics in the purity variation for the wear of STB2. The wear test was carried out under different experimental condition various sliding speed, contact pressure and sliding distance. According as the alumina purity increased, wear volume of the STB2 decreased and minimum value of wear volume was over to high speed side. According as the sliding speed and sliding distance increased, friction coefficient decreased owing to drop of the shear strength, it decresed largely owing to decreased of elastic modulus and thermal conductivity with decrease in alumina purity. Indicative of minimum, value of wear volume, low speed side was abrasive wear, high speed side was wear of heat softening. The friction surface of ceramics protacted by oxide was transfer from STB2.

  • PDF

A Study on the Ship's Speed Control and Ship Handling at Myeongnayang Waterway (명량수도 해역에서 항해속력 규제와 선박운용에 관한 연구)

  • Kim, Deug-Bong;Jeong, Jae-Yong;Park, Young-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.193-201
    • /
    • 2014
  • This study provided safe sailing speed and appropriate passing time to areas of known strong current water to prevent marine accident of the ships. To the interpretation of these data which target Myeongnyang waterway, AIS data of the ship was collected from $12^{th}$ July to $15^{th}$ July 2010 and site environment was investigated on $4^{th}$ September 2010. On the basis of the collected data, the 'Minimum Navigation Speed' and 'Optimum Navigation Speed' were calculated. It has also considered the 'Spare control force' or allowance and the 'Respond Rudder Angle' for each tidal current speed. Additionally, it suggested the safe passing time to strong current area by analyzing tidal level and tidal current speed. The conclusion of the research are as follows : (1) If the flow rate is greater than 4.4 kn, it is difficult for the model ship to control herself by her own steering power and to cope with tidal current pressure force and yaw moment caused by the tidal current.. (2) The minimum navigation speed should be over 2.3 times the tidal current and the optimum navigation speed should be over 4.0 times the tidal current. (3) When spring tide, the optimum passing time at Myeongnyang waterway is between 30 minutes to 1 hour before the time of high/low water, and at 5 hours after high/low water, passing of ships should be avoided because it is time when the flow rate is over 4 kn.