• 제목/요약/키워드: Minimum Slack

검색결과 16건 처리시간 0.021초

Reliability of TLP tethers under extreme tensions

  • Siddiqui, N.A.;Ahmad, Suhail
    • Structural Engineering and Mechanics
    • /
    • 제16권3호
    • /
    • pp.317-326
    • /
    • 2003
  • The tension leg platform (TLP) is a moored floating offshore structure whose buoyancy is more than its weight. The mooring system, known as tethers, is vulnerable to failure due to extreme (maximum and minimum) tensions. In the present study the reliability of these tethers under maximum and minimum tension (ultimate limit state) has been studied. Von-Mises failure criteria has been adopted to define the failure of a tether against maximum tension. The minimum tension failure criteria has been assumed to meet when the tethers slack due to loss of tension. First Order Reliability method (FORM) has been adopted for reliability assessment. The reliability, in terms of reliability index, and probability of failure has been obtained for twelve sea states. The probabilities of failure so obtained for different sea states have been adopted for the calculation of annual and life time probabilities of failure.

타이밍 구동 FPGA 분석적 배치 (Timing Driven Analytic Placement for FPGAs)

  • 김교선
    • 전자공학회논문지
    • /
    • 제54권7호
    • /
    • pp.21-28
    • /
    • 2017
  • FPGA 배치 툴 연구는 학계에서도 단순한 가상 아키텍처 모델 가정에서 벗어나 상용 툴처럼 캐리체인이나 광폭함수 멀티플렉서, 메모리/승산기 블록 등의 성능 및 밀도를 향상시키는 소자들을 포함하는 현실적인 모델을 적용하기 시작하였다. 이 때 발생하는 실제적 이슈들을 다룬 사전 패킹, 다층 밀도 분석 등의 기법이 초기 분석적 배치 (Analytic Placement)에 적용되어 밀도를 분산시키면서 배선 길이를 효과적으로 최소화한 연구가 앞서 발표된 바 있다. 더 나아가 궁극적으로는 타이밍을 최적화해야하기 때문에 많은 연구에서는 타이밍 제약 조건을 만족시키기 위한 기법들이 제시되고 있다. 그러나 초기 배치 후 진행되는 배치 적법화 및 배치 개선에서 주로 적용될 뿐 분석적 배치에서 이러한 타이밍 기법을 적용한 사례는 거의 없다. 본 논문에서는 사전 패킹 및 다층 밀도 분석 등의 기법이 구현된 기존 분석적 배치에 타이밍 제약 조건 위반을 검출하고 이를 최소화하는 기법을 결합하는 방안을 소개한다. 먼저 정적 타이밍 검증기를 집적하여 배선 길이가 최소화된 기존 배치 결과의 타이밍을 검사해 보았으며 위반을 감소시키기 위해 신호 도착 시간 (Arrival Time)을 최소화하는 함수를 분석적 배치의 목적 함수에 추가하였다. 이 때 각 클록마다 주기가 다를 수 있기 때문에 각 클록별로 함수를 따로 계산해 합산하는 방안이 제안되었다. 또한, 위반이 없는 클록 도메인의 신호 경로들도 불필요하게 단축될 수 있기 때문에 음수 슬랙 (Negative Slack)을 계산하여 이를 최소화하는 함수를 추가로 제안하여 비교하였다. 영역 분할 기법 (Partitioning)을 기반으로 배선 길이를 최소화하는 기존 배치 적법화를 그대로 사용한 후 타이밍 검증을 통해 초기 분석적 배치 단계에서 타이밍 개선 효과를 분석하였다. 배치 적법화 시 추가적인 타이밍 최적화 기법이 사용되지 않았기 때문에 타이밍 개선이 있다면 이것은 전적으로 분석적 배치의 목적 함수개선에 의한 효과이다. 12개 실용예제에 대해 실험한 결과, 목적 함수에 도착 시간 함수가 적용되었을 때 그렇지 않았을 때보다 최악 음수 슬랙 (Worst Negative Slack)이 평균 약 15% 정도 감소되었으며 음수 슬랙 함수가 적용되었을 때 이보다 약 6%정도 추가로 더 감소됨을 확인하였다.

납기지연시간 단축을 위해 AGV 시간을 고려한 작업할당 방법 (A AGV time-oriented Job Dispatching Methodology for Preventing the Tardiness)

  • 김근형;고효헌;백준걸
    • 대한안전경영과학회지
    • /
    • 제13권4호
    • /
    • pp.125-137
    • /
    • 2011
  • Customers are generally requiring a variety of products, earlier due date, and lower price. A manufacturing process needs the efficient scheduling to meet those customer's requirements. This study proposes the novel algorithm named MJA(Minimum Job completion time and AGV time) that increases the performance of machines and AGV(Automated Guided Vehicles) in many kinds of job types. MJA optimizes the bottleneck of machines and efficiency of AGV with considering two types of dispatching at the same time. Suggested algorithm was compared with existing heuristic methods by several simulations, it performed better for reducing the time of tardiness.

Dynamics model of the float-type wave energy converter considering tension force of the float cable

  • Hadano, Kesayoshi;Lee, Sung-Bum;Moon, Byung-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.217-224
    • /
    • 2014
  • We have developed the novel device that can extract energy from ocean waves utilizing the heaving motion of a floating mass. The major components of the energy converter are: a floater, a counterweight, a cable, a driving pulley, two idler pulleys, a ratchet, and a generator. The device generates power through the tension force in the cable and the weight difference between the floater and the counterweight. When the system is at static free condition, the tension in the cable is equal to the weight of the counterweight which is minimum. Therefore it is desirable to keep the counterweight lighter than the floater. However, experiments show that during the rise of the water level, the torque generated by weight of the counterweight is insufficient to rotate the driving pulley which causes the cable on the floater side to slack. The proposed application of the tension pulley rectifies these problems by preventing the cable from becoming slack when the water level rises. In this paper, the dynamics model is modified to incorporate the dynamics of the tension pulley. This has been achieved by first writing the dynamical equations for the tension pulley and the energy converter separately and combining them later. This paper investigates numerically the effect of the tension pulley on various physical quantities such as the cable tension, the floater displacement, and the floater velocity. Results obtained indicate that this application is successful in suppressing large fluctuations of the cable tension.

Tidal Front in the Main Tidal Channel of Kyunggi Bay, Eastern Yellow Sea

  • Lee, Heung-Jae;Lee, Seok;Cho, Cheol-Ho;Kim, Cheol-Ho
    • Journal of the korean society of oceanography
    • /
    • 제37권1호
    • /
    • pp.10-19
    • /
    • 2002
  • The detailed structure of a tidal front and its ebb-to flood variation in the main tidal channel of the Kyunggi Bay in the mid-west coast of Korea were investigated by analyzing CTD data and drifter trajectories collected in late July 1999. A typical tidal front was formed in water about 60 m deep at the mouth of the channel. Isotherms and isohalines in the upper layer above the seasonal pycnocline in the offshore stratified zone inclined upward to the sea surface to form a surface front, while those in the lower layer declined to the bottom front. The location of the front is consistent with $100 S^3/cm^2$ of the mixing index H/U defined by Simpson and Hunter (1974), where H is the water depth and U is the amplitude of tidal current. The potential energy anomaly in the frontal zone varied at an ebb-to flood tidal cycle, showing a minimum at slack water after ebb but a maximum at slack water after flood. This ebb-to flood variation in potential energy anomaly is not accounted for by the mixing index. We conclude that on- and offshore displacement of the water column by tidal advection is responsible for the ebb-to-flood variation in the frontal zone.

Displacement and force control of complex element structures by Matrix Condensation

  • Saeed, Najmadeen M.;Kwan, Alan S.K.
    • Structural Engineering and Mechanics
    • /
    • 제59권6호
    • /
    • pp.973-992
    • /
    • 2016
  • A direct and relatively simple method for controlling nodal displacements and/or internal bar forces has been developed for prestressable structural assemblies including complex elements ("macro-elements", e.g., the pantographic element), involving Matrix Condensation, in which structural matrices being built up from matrices of elementary elements. The method is aimed at static shape control of geometrically sensitive structures. The paper discusses identification of the most effective bars for actuation, without incurring violation in bar forces, and also with objective of minimal number of actuators or minimum actuation. The advantages of the method is that the changes for both force and displacement regimes are within a single formulation. The method can also be used for adjustment of bar forces to either reduce instances of high forces or increase low forces (e.g., in a cable nearing slack).

신경회로망과 전문가시스템에 의한 FMC의 지능형 스케쥴링 (Intelligent FMC Scheduling Utilizing Neural Network and Expert System)

  • 박승규;이창훈;김유남;장석호;우광방
    • 제어로봇시스템학회논문지
    • /
    • 제4권5호
    • /
    • pp.651-657
    • /
    • 1998
  • In this study, an intelligent scheduling with hybrid architecture, which integrates expert system and neural network, is proposed. Neural network is trained with the data acquired from simulation model of FMC to obtain the knowledge about the relationship between the state of the FMC and its best dispatching rule. Expert system controls the scheduling of FMC by integrating the output of neural network, the states of FMS, and user input. By applying the hybrid system to a scheduling problem, the human knowledge on scheduling and the generation of non-logical knowledge by machine teaming, can be processed in one scheduler. The computer simulation shows that comparing with MST(Minimum Slack Time), there is a little increment in tardness, 5% growth in flow time. And at breakdown, tardness is not increased by expert system comparing with EDD(Earliest Due Date).

  • PDF

Production Planning Method Using the Push-back Heuristic Algorithm: Implementation in a Micro Filter Manufacturer in South Korea

  • Sung, Shin Woong;Jang, Young Jae;Lee, Sung Wook
    • Industrial Engineering and Management Systems
    • /
    • 제14권4호
    • /
    • pp.401-412
    • /
    • 2015
  • In this paper, we present a modeling approach to production planning for an actual production line and a heuristic method. We also illustrate the successful implementation of the proposed method on the production line. A heuristic algorithm called the push-back algorithm was designed for a single machine earliness/tardiness production planning with distinct due date. It was developed by combining a minimum slack time rule and shortest processing time rule with a push-back procedure. The results of a numerical experiment on the heuristic's performance are presented in comparison with the results of IBM ILOG CPLEX. The proposed algorithm was applied to an actual case of production planning at Woongjin Chemical, a leading manufacturer of filter products in South Korea. The seven-month execution of our algorithm led to a 24.5% decrease in the company's inventory level, thus demonstrating its practicality and effectiveness.

Dynamic analysis of slack moored spar platform with 5 MW wind turbine

  • Seebai, T.;Sundaravadivelu, R.
    • Ocean Systems Engineering
    • /
    • 제1권4호
    • /
    • pp.285-296
    • /
    • 2011
  • Spar platforms have several advantages for deploying wind turbines in offshore for depth beyond 120 m. The merit of spar platform is large range of topside payloads, favourable motions compared to other floating structures and minimum hull/deck interface. The main objective of this paper is to present the response analysis of the slack moored spar platform supporting 5MW wind turbine with bottom keel plates in regular and random waves, studied experimentally and numerically. A 1:100 scale model of the spar with sparD, sparCD and sparSD configuration was studied in the wave basin ($30{\times}30{\times}3m$) in Ocean engineering department in IIT Madras. In present study the effect of wind loading, blade dynamics and control, and tower elasticity are not considered. This paper presents the details of the studies carried out on a 16 m diameter and 100 m long spar buoy supporting a 90 m tall 5 MW wind turbine with 3600 kN weight of Nacelle and Rotor and 3500 kN weight of tower. The weight of the ballast and the draft of the spar are adjusted in such a way to keep the centre of gravity below the centre of buoyancy. The mooring lines are divided into four groups, each of which has four lines. The studies were carried out in regular and random waves. The operational significant wave height of 2.5 m and 10 s wave period and survival significant wave height of 6 m and 18 s wave period in 300 m water depth are considered. The wind speed corresponding to the operational wave height is about 22 knots and this wind speed is considered to be operating wind speed for turbines. The heave and surge accelerations at the top of spar platform were measured and are used for calculating the response. The geometric modeling of spar was carried out using Multisurf and this was directly exported to WAMIT for subsequent hydrodynamic and mooring system analysis. The numerical results were compared with experimental results and the comparison was found to be good. Parametric study was carried out to find out the effect of shape, size and spacing of keel plate and from the results obtained from present work ,it is recommended to use circular keel plate instead of square plate.

케이블의 동적거동에 미치는 비선형 영향 (Nonlinear Effects on the Cable Dynamic Behaviour)

  • 신현경
    • 대한조선학회지
    • /
    • 제27권1호
    • /
    • pp.11-16
    • /
    • 1990
  • 거친 해상에서 케이블이 형성된 수 있는 큰 동장력(large dynamic tensile forces)과 기하학적 비선형성(geometric nonlinearity)의 고려는 비선형 케이블 운동방정식(nonlinear cable dynamics)의 해에 상당한 영향을 끼치며 이 결과의 응용은 케이블의 극단장력(extreme tensions)과 slack-and-snapping 케이블의 연구에서 필수적인 부분이 될 것이다. 비선형 유체항력만을 포함한 경우와 기하학적 비선형성과 큰 동장력항을 함께 포함하는 경우의 케이블 운동방정식의 해를 비교하여, 케이블의 동적 거동에 대한 기하학적 비선형과 큰 동장력항의 복합적인 영향을 연구한다. 큰 동장력항과 기하학적 비선형성의 고려는, 최대 동장력의 증가를 가져오나 반면에 최소 동장력의 크기에서의 감소를 가져옴으로, 결국 동장력의 평균값의 상승과 그로인한 케이블의 피로수명 단축을 유발할 수 있다.

  • PDF