• Title/Summary/Keyword: Minimum Field Strength

Search Result 90, Processing Time 0.028 seconds

Using grain size to predict engineering properties of natural sands in Pakistan

  • Aziz, Mubashir
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.165-171
    • /
    • 2020
  • Laboratory determination of strength and deformation behavior of clean sands and gravels has always been challenging due to the difficulty in obtaining their undisturbed samples. An alternative solution to this problem is to develop correlations between mechanical properties of cohesionless soils and their gradation characteristics. This study presents database of 3 natural sands with 11 varying particle size gradation curves to allow investigating relationships between mean particle size, maximum and minimum void ratio, relative density and shear strength of the test soils. Direct shear tests were performed at relative densities of 50, 75 and 95% to explore the effects of gradation and density on the angle of internal friction of the modeled sand samples. It is found that the mean grain size D50 bears good correlations with void ratio range (emax - emin) and peak angle of internal friction 𝜙'peak. The generated regression models are in good agreement with published literature and can be considered as reliable for natural sands in Pakistan. These empirical correlations can save considerable time and efforts involved in laboratory and field testing.

Physical properties of Rapid-Setting Asphalt Concrete Grouting materials (초속경형 아스팔트 콘크리트용 주입재의 물리적 특성)

  • Park Won-Chun;Mun Kyoung-Ju;Jo Young-Ho;Soh Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.377-380
    • /
    • 2005
  • The objective of this study is to evaluate the physical properties of rapid-setting asphalt concrete grouting materials. This study investigates the fluidity, viscosity and compressive strength at 3-hour of grouting materials with various mixing ratio. From the test results, when the quantity of CSA is over about 30 $\%$, the compressive strength of 3-hour was satisfied a minimum requirement of 7 days in Japan. Also, the fluidity for the time to infiltrate into pore of the asphalt concrete are enough to be applied in construction field.

  • PDF

Predicting the Compressive Strength of Concrete Using a Maturity Concept (적산온도개념을 이용한 콘크리트 압축강도 예측)

  • Ko, Hune-Bum
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.229-234
    • /
    • 2022
  • The non-destructive method of easily evaluating concrete strength through the concept of maturity has been verified by many researchers. The current work introduced such a concept in concrete strength assessment that involved 843 variables and specific values that 11 papers used in experiments, including constant temperatures (5, 10, 20, 30, 40, 50℃) with a W/B range of 18 to 70% and different curing ages (0.5 to 182 days). The classification of concrete as being of normal-strength concrete (40MPa or less), high-strength concrete (40~70MPa), and Super high-strength concrete (70MPa or more) enabled this study to identify the relationship between maturity and concrete strength using the most convenient and easily applicable maturity model in the construction field. A regression formula of lowest guaranteed concrete strength on the basis of maturity was presented.

A Study of Structural Strength Characteristics for Application of Carbon Composites in Fishing Vessel Hull (어선 선체의 탄소섬유복합재 적용을 위한 구조 강도 특성 연구)

  • Hae-Soo Lee;Hyung-Won Lee;Seung-June Choi;Myung-Jun Oh
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.69-77
    • /
    • 2023
  • Recently, carbon composites have been applied to various fields. However, carbon composites have not been applied to the fishing vessel field due to its structure standards centered on glass composites. In this study, a structural strength evaluation study was conducted for the application of carbon composites in the fishing vessel field. Hull minimum thickness verification test and hull joint verification test were conducted. Compared to glass composites, the verification was based on equivalent or better performance. The results show that carbon composites can reduce the weight by 20% compared to glass composites. For hull joints, it was necessary to increase the thickness of the joint seam by the thickness of the hull to apply carbon composite. Through this study, a standard for the application of carbon composites to fishing vessel can be established.

A study of Dielectric Strength of Spacer for Tap Changer in a $SF^6 $ Gas Insulated Transformer ($SF^6 $ 가스변압기의 탭절환기용 스페이서의 절연내력에 관한 연구)

  • Heo, U-Haeng;Ha, Yeong-Sik;Hong, Jeong-Gyun;Kim, Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.11
    • /
    • pp.556-562
    • /
    • 2001
  • Spacer is used between main tank and auxiliary tank for on load tap changer in gas insulated power transformer. This paper deals with electrical design of spacer and discusses different analysis method of between 2D FEM(finite element method) and 3D FEM. To design spacer, we modeled structure of two kind of coaxial cylinders of spacer conductors and analysised electric field of spacer at impulse and induced test voltage condition. Spacer has 13 conductors and electric field was changed according to arrangement of conductors. We could find out arrangement of conductors at which electric stress is minimum. And this arrangement was satisfied with actual test conditions.

  • PDF

Empirical estimation of daily artifact of HMI Doppler velocities in the umbral region

  • Cho, Il-Hyun;Cho, Kyung-Suk;Bong, Su-Chan;Kim, Yeon-Han;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.71.1-71.1
    • /
    • 2014
  • To investigate physical properties of Solar pores, we use SDO/HMI data from 2010 to 2013. For this, we select single and isolated pores from the active region (Axx, Bxo, Bxi and Bxc-type) listed in Solar Region Summary. Pore is defined by connected pixels satisfying the intensity threshold from pixel of minimum intensity. We try to obtain area, intensity, magnetic field, and Doppler velocity of pores from HMI data. After removing the effects of orbital motion of the SDO satellite and differential rotation of the Sun, we identify that significant daily variations of Doppler velocity with non-zero ordinates still remain in the umbral region, and the artifact is quite dependent on the strength of magnetic field and radial component of velocity of SDO satellite. In this study we develope empirical model to remove the artifact. A preliminary result on the elimination of the artifact will be presented.

  • PDF

Optimal Design System of Grillage Structure under Constraint of Natural Frequency Based on Genetic Algorithm (고유진동수 제한을 갖는 골조구조의 GA 기반 최적설계 시스템)

  • Kim, Sung Chan;Kim, Byung Joo;Kim, E Dam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.39-45
    • /
    • 2022
  • Normal strategy of structure optimization procedure has been minimum cost or weight design. Minimum weight design satisfying an allowable stress has been used for the ship and offshore structure, but minimum cost design could be used for the case of high human cost. Natural frequency analysis and forced vibration one have been used for the strength estimation of marine structures. For the case of high precision experiment facilities in marine field, the structure has normally enough margin in allowable stress aspect and sometimes needs high natural frequency of structure to obtain very high precise experiment results. It is not easy to obtain a structure design with high natural frequency, since the natural frequency depend on the stiffness to mass ratio of the structure and increase of structural stiffness ordinary accompanies the increase of mass. It is further difficult at the grillage structure design using the profiles, because the properties of profiles are not continuous but discrete, and resource of profiles are limited at the design of grillage structure. In this paper, the grillage structure design system under the constraint of high natural frequency is introduced. The design system adopted genetic algorithm to realize optimization procedure and can be used at the design of the experimental facilities of marine field such as a towing carriage, PMM, test frame, measuring frame and rotating arm.

The Compressive Strength and Durability Properties of Polypropylene Fiber Reinforced EVA Concrete (폴리프로필렌 섬유 보강 EVA 콘크리트의 압축강도 및 내구성)

  • Nam, Ki Sung;Sung, Chan Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.11-19
    • /
    • 2015
  • The important properties of EVA (ethylene vinyl acetate) redispersible polymer was waterproof, densification of internal pore space of concrete and ball bearing and micro filler. Also, the significant role of polypropylene(PP) fiber was crack control and blockade of movement for deterioration factors. The most studies for EVA were limited in the field of mortar and PP fiber reinforced concrete had been studied in the state of being restricted unit water content, rich mix and mixing much of the fiber without considering construction site. Therefore, the control mix design were applied in ready mixed concrete using 10 % fly ash of total cement weight used in batch plant. On the basis of control mix design, EVA contents ranging from 0 % to 10 % of total cement weight and PP fiber contents ranging from 0 % to 0.5 % of EVA concrete volume were used in the mix designs. The results showed the maximum compressive strength value was measured at EVA 5.0 % and PP fiber 0.1 %, the minimum water absorption ratio was at EVA 10 % and PP fiber 0 %, the durability factor for freezing and thawing resistance was at EVA 5.0 % and PP fiber 0.3 % and the minimum weight reduction ratio of resistance to sulfuric acid attack was at EVA 10 % and PP fiber 0.5 % after curing age 42days. Meanwhile, From these results, PP fiber reinforced EVA concrete would be very benefit, if each optimal mix types were used in hydraulic structures, underground utilities and agricultural structures.

Field Pullout Tests and Stability Evaluation of the Pretension Soil Nailing System (프리텐션 쏘일네일링 시스템의 현장인발시험 및 안정성 평가)

  • Kim, Hong-Taek;Choi, Young-Geun;Park, Si-Sam;Kim, Berm-Suk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.27-40
    • /
    • 2003
  • In the present study, a newly modified soil nailing technology named as the PSN(Pretension Soil Nailing) system is proposed. Effects of various factors related to the design of the pretension soil nailing system, such as the length of a sheathing pipe and the fixed cone, are examined throughout a series of the displacement-controlled field pull-out tests. 9 displacement-controlled field pull-out tests are performed in the present study and the pretension forces are also evaluated based on the measurements. In addition, both short-term and long-term characteristics of pull-out deformations of the newly proposed PSN system are analyzed and compared with those of the general soil nailing system by carrying out the stress-controlled field pull-out tests. A numerical approach is further made to determine a postulated failure surface as well as a minimum safety factors of the proposed PSN system using the shear strength reduction technique and the $FLAC^{2D}$ program. Global minimum safety factors and local safety factors at various excavation stages computed in case of the PSN system are analyzed throughout comparisons with the results expected in case of the general soil nailing system. An efficiency of the PSN system is also dealt with by analyzing the wall-facing deformations and the adjacent ground surface settlements.

  • PDF

Approximate Analytical Formula for Minimum Principal Stress Satisfying the Generalized Hoek-Brown Failure Criterion (일반화된 Hoek-Brown 파괴기준식을 만족하는 최소주응력의 해석적 근사식)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.480-493
    • /
    • 2021
  • Since the generalized Hoek-Brown criterion (GHB) provides an efficient way of identifying its strength parameter values with the consideration of in-situ rock mass condition via Geological Strength Index (GSI), this criterion is recognized as one of the standard rock mass failure criteria in rock mechanics community. However, the nonlinear form of the GHB criterion makes its mathematical treatment inconvenient and limits the scope of its application. As an effort to overcome this disadvantage of the GHB criterion, the explicit approximate analytical equations for the minimum principal stress, which is associated with the maximum principal stress at failure, are formulated based on the Taylor polynomial approximation of the original GHB criterion. The accuracy of the derived approximate formula for the minimum principal stress is verified by comparing the resulting approximate minimum principal stress with the numerically calculated exact values. To provide an application example of the approximate formulation, the equivalent friction angle and cohesion for the expected plastic zone around a circular tunnel in a GHB rock mass are calculated by incorporating the formula for the approximate minimum principal stress. It is found that the simultaneous consideration of the values of mi, GSI and far-field stress is important for the accurate calculation of equivalent Mohr-Coulomb parameter values of the plastic zone.