DOI QR코드

DOI QR Code

적산온도개념을 이용한 콘크리트 압축강도 예측

Predicting the Compressive Strength of Concrete Using a Maturity Concept

  • 고훈범 (인하공업전문대학 건축과)
  • Ko, Hune-Bum (Department of Architecture, Inha Technical College)
  • 투고 : 2021.10.27
  • 심사 : 2022.01.20
  • 발행 : 2022.01.28

초록

비파괴적으로 콘크리트 강도를 간편하게 구할 수 있는 방법으로 적산온도(Maturity) 개념을 통한 콘크리트 강도 추정방법이 많은 연구자를 통하여 검증되고 있다. 본 연구에서는 적산온도 개념을 도입하여 콘크리트 강도를 평가하고자 하는데, 11편 논문의 실험결과에서 W/B=18~70%의 범위에서 일정한 온도(5, 10, 20, 30, 40, 50℃)와 다양한 재령(0.5~182일)에 따른 843개의 실험값을 가지고 가장 간편한 적산온도 모델을 사용하고, 강도별로 보통강도 콘크리트(40Mpa이하), 고강도콘크리트(40~70MPa), 초고강도 콘크리트(70MPa 이상)로 구분하여 현장에서 쉽게 적용할 수 있는 적산온도와 콘크리트 강도관계를 도출하고, 적산온도에 따른 최저 보증 콘크리트 압축강도 추정식을 제시하였다.

The non-destructive method of easily evaluating concrete strength through the concept of maturity has been verified by many researchers. The current work introduced such a concept in concrete strength assessment that involved 843 variables and specific values that 11 papers used in experiments, including constant temperatures (5, 10, 20, 30, 40, 50℃) with a W/B range of 18 to 70% and different curing ages (0.5 to 182 days). The classification of concrete as being of normal-strength concrete (40MPa or less), high-strength concrete (40~70MPa), and Super high-strength concrete (70MPa or more) enabled this study to identify the relationship between maturity and concrete strength using the most convenient and easily applicable maturity model in the construction field. A regression formula of lowest guaranteed concrete strength on the basis of maturity was presented.

키워드

과제정보

This work was supported by INHA TECHNICAL COLLEGE Research Grant.

참고문헌

  1. A. G. A. Saul. (1951), Principles Underlying The Steam Curing of Concrete at Atmospheric Pressure, Magazine of Concrete Research, 2(6), 127-140. DOI : 10.1680/macr.1951.2.6.127
  2. P. F. Hansen & J. Pederson. (1977), Maturity Computer for Controlled Curing and Hardening of Concrete Strength, Nordiska Betongfoerbundet, 21-25. http://worldcat.org/issn/0029130700291307
  3. J. M. Plowman. (1956), Maturity and The Strength of Concrete, Magazine of Concrete Research, 13-22.
  4. N. J. Cario. (1984), Maturity Method : Theory and Application, Journal of Cement, and Aggregates, ASTM, 6(2), 61-73. DOI : 10.1520/CCA10358J
  5. ASTM. (2021), Standard Practice for Estimating Concrete Strength by the Maturity Method, ASTM C 1074-19 E1
  6. Architectural Institute of Japan. (2018), Cold Weather Concreting, JASS5, 411-426.
  7. Korea construction standards center. (2021), Cold Weather Concreting in Standard Specification of Construction Work, KCS [online]. https://www.kcsc.re.kr/StandardCode/Viewer/31196#title-148
  8. H. B. Ko, E. I. Eun & S. W. Eum. (1998), The Effects of Curing Temperature History on Concrete Strength Development, Journal of the Korea Concrete Institute, 10(5), 89-100.
  9. Y. J. Kwon. (2004), A Study on the Strength Prediction of High Strength Concrete using Maturity Function, Journal of The Architectural Institute of Korea Structure & Construction, 20(6), 67-74.
  10. M. H. Kim & M. H. Kim. (1988), A Study on the Strength Inference and Application by the Maturity and Strength Development of Concrete, Journal of The Architectural Institute of Korea, 4(1), 263-269.
  11. B. S. Kil, M. H. Cho, J. H. Jeon & J. H. Nam. (1996), An Experimental Study on the Compressive Strength Prediction of High-Strength Concrete by Maturity, Proc. of the Korea Concrete Institute, 225-231.
  12. J. H. Nam & B. S. Khil. (1997), Application of the prediction Model of Concrete Strength by Maturity Method to High-Strength concrete, Journal of The Architectural Institute of Korea, 13(7), 197-206.
  13. M. H. Kim, J. H. Nam, B. S. Khil, S. P. Kang & J. H. Jang. (2003), A Study on the Development of Strength Prediction Model and Strength Control for Construction Field by maturity Method, Journal of the Korea Concrete Institute, 15(1), 87-94. https://doi.org/10.4334/JKCI.2003.15.1.087
  14. K. H. Yang, J. S. Mun, & M. S. Cho. (2015), Effect of Curing Temperature Histories on the Compressive Strength Development of High-Strength Concrete, Advances in Materials Science and Engineering, 2015, Article ID 965471, 1-12. DOI : 10.1155/2015/965471
  15. K. Hasuo, Y. Nishimoto, T. Matsuda & H. Kawakami., Estimate of Concrete Strength in Early Age using the Maturity Method-Study on Concrete using Ordinary Portland Cement-, Reserch report of Sumitomo Mitsui Construction co. LTD., No.2, 145-150(in Japanese).
  16. Sumitomo Osaka Cement, Technical report, 1-78(in Japanese).
  17. J. Minagawa, Y. Satou, Y. Matuda & K. Kawakami. (2002). Basic experiments on fluctuations in concrete strength development in structures, Proc. of Janpan Concrete Institute, 24(1), 945-950(in Japanese).
  18. D. Sisikura. (2001), Basic experiments on fluctuations in concrete strength development in structures, Report of Japan Testing Center for Construction Materials, 13(6), 6-11(in Japanese).