• Title/Summary/Keyword: Minimum Building Floors

Search Result 14, Processing Time 0.029 seconds

Historical Review on High-rise Buildings-promoting Policies on the Main Roads of Seoul for Urban Beautification from the 1950s to the 1970s (1950-1970년대 도시미화를 위한 서울 간선도로변 고층화제도의 사적 고찰)

  • Park, Ilhyang;Jeon, BongHee
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.10
    • /
    • pp.41-52
    • /
    • 2019
  • The purpose of this study was to analyze the historical development of high-rise buildings-promoting policies in Seoul in terms of modern urban redevelopment. The results of this study were as follows; The maximum height of the buildings has been limited by National codes since 1934. But at the same time, Seoul Metropolitan government had limited the minimum building floors of roadside buildings through local regulations after the Korean War. The high-rise city had been regarded as a means of beautifying Seoul for a long time. However since the 2000s, the minimum height limit for buildings was removed from local regulations and the concept of high-rise restrictions was no longer significant as before.

A study on the comparison of a steel building with braced frames and with RC walls

  • Buyuktaskin, Almila H. Arda
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.263-270
    • /
    • 2017
  • In this study, two geometrically identical multi-storey steel buildings with different lateral load resisting systems are structurally analyzed under same earthquake conditions and they are compared with respect to their construction costs of their structural systems. One of the systems is a steel structure with eccentrically steel braced frames. The other one is a RC wall-steel frame system, that is a steel framed structure in combination with a reinforced concrete core and shear walls of minimum thickness that the national code allows. As earthquake resisting systems, steel braced frames and reinforced concrete shear walls, for both cases are located on identical places in either building. Floors of both buildings will be of reinforced concrete slabs of same thickness resting on composite beams. The façades are assumed to be covered identically with light-weight aluminum cladding with insulation. Purpose of use for both buildings is an office building of eight stories. When two systems are structurally analyzed by FEM (finite element method) and dimensionally compared, the dual one comes up with almost 34% less cost of construction with respect to their structural systems. This in turn means that, by using a dual system in earthquake zones such as Turkey, for multi-storey steel buildings with RC floors, more economical solutions can be achieved. In addition, slender steel columns and beams will add to that and consequently more space in rooms is achieved.

Assessment of damages on a RC building after a big fire

  • Ada, Mehmet;Sevim, Baris;Yuzer, Nabi;Ayvaz, Yusuf
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.177-197
    • /
    • 2018
  • This paper presents a case study about the damages on the structural elements of a cast in place reinforced concrete (RC) building after a big fire which was able to be controlled after six hours. The fire broke off at the $2^{nd}$ basement floor of the building, which has five basements, one ground, and two normal floors. As a result of intensely stocked ignitable materials, it spread out to the all of the upstairs. In visual inspection, most of the typical fire damages were observed (such as spalling, net-like cracks, crumbled plasters, bared or visible reinforcement). Also, failures of the $2^{nd}$ basement columns were encountered. It has been concluded that the severity failures of the columns at the $2^{nd}$ basement caused utterly deformation of the building, which is responsible for the massive damages on the beam-column connections. All of the observed damages were categorized related to the types and presented separated regarding the floors. Besides to the visual inspection, the numerical analysis was run to verify the observed damaged on the building for columns, beams, and the connection regions. It is concluded from the study that several parameters such as duration of the fire, level of the temperature influence on the damages to the RC building. Also, it is highlighted by the study that if the damaged building is considered on the overall structural system, it is not able to satisfy the minimum service requirements neither gravity loads nor earthquake conditions.

Full Scale Testing of the Effect of Stairwell Pressurization on Pressure Differential and Flow Velocity

  • Son, Bong-Sae;Park, Kyung-Hwan;Chang, Young-Bae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.83-89
    • /
    • 2011
  • A series of full-scale testing was conducted to examine the effect of stairwell pressurization on the pressure differential between the stairwell and the auxiliary room and between the auxiliary room and the residence. Also, flow velocity profiles at open doors were measured. The building tested was a condominium that had twenty floors above the ground and two floors underground. For pressurization of the stairs, a blower was used to supply air into the stairwell at one location underground. Thirteen different cases were tested, and test variables included the number of floors with open doors and the flow rate of the air supply. When the doors on the first floor were open, the pressure differential between the stairwell and the auxiliary room was distributed almost uniformly except for locations near the first floor. When the flow rate was in the range of 180~270 CMM and the doors of one floor were open, the flow velocity could satisfy the requirement of fire safety standards and the stairwell pressure was positive at all levels. However, the minimum pressure requirement (10 Pa) could not always be satisfied. When doors on two floors were open, the flow velocity requirement could be satisfied by increasing the flow rate, but it was found impractical to satisfy the minimum pressure requirement without causing excessive pressure differential in the area near the blower.

Elementary School in Gwangju Gwangsan Radon gas Density Measurement (광주광역시 광산구 소재 초등학교 라돈가스 농도 계측)

  • Ahn, Byungju;Oh, Jihoon
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.4
    • /
    • pp.211-216
    • /
    • 2014
  • Radium is rock or soil of crust or uranium of building materials after radioactivity collapse process are created colorless and odorless inert gas that accrue well in sealed space like basement. It inflow to lung circulate respiratory organ and caused lung cancer because of deposition of lung or bronchial tubes. In this study, the air in the elementary school classroom nongdoeul tonkatsu place of measured values were compared using the calculated annual internal radiation exposure. La tonkatsu exposure measured in primary school classroom at least five schools when you close the windows in the average floor 0.56mSv 2 floors ground floor windows when opened 0.384mSv 048mSv 3 floors, 2 floor levels of the same three layers 0.31mSv 0.296mSv the human exposure to radon and radiation on the first floor of 3 floors above ground in a lot of exposure was moderate. When you close the window from the first floor up 0.384mSv 056mSv 3 floors with a minimum annual radiation exposure due to natural radiation in the 16 to 23.3 percent minimum 2.4mSv accounted for. When I opened the window to the maximum annual radiation exposure 2.4mSv 0.296mSv 0.31mSv least a minimum of 12.3 to 12.91% accounted for Results suggest that more than five chodeunghakgyoeun La tonkatsu domestic radon measurements conducted below regulatory requirements and internal exposure has also fall within the normal range. People The less the radiation exposure to the human body because it reduces the impact in the classroom in elementary school vent windows often reduced to the maximum radon concentration in the air, if called tonkatsu be able to reduce radiation exposure for the immune system is weak and elementary will be helpful to experiment more in the future for the school authorities called tonkatsu investigation is done to him if the action to establish a more secure school building facilities is thought would be helpful.

Damage detection of multi-storeyed shear structure using sparse and noisy modal data

  • Panigrahi, S.K.;Chakraverty, S.;Bhattacharyya, S.K.
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1215-1232
    • /
    • 2015
  • In the present paper, a method for identifying damage in a multi storeyed shear building structure is presented using minimum number of modal parameters of the structure. A damage at any level of the structure may lead to a major failure if the damage is not attended at appropriate time. Hence an early detection of damage is essential. The proposed identification methodology requires experimentally determined sparse modal data of any particular mode as input to detect the location and extent of damage in the structure. Here, the first natural frequency and corresponding partial mode shape values are used as input to the model and results are compared by changing the sensor placement locations at different floors to conclude the best location of sensors for accurate damage identification. Initially experimental data are simulated numerically by solving eigen value problem of the damaged structure with inclusion of random noise on the vibration characteristics. Reliability of the procedure has been demonstrated through a few examples of multi storeyed shear structure with different damage scenarios and various noise levels. Validation of the methodology has also been done using dynamic data obtained through experiment conducted on a laboratory scale steel structure.

A Study on the Evacuation Risk of Simultaneous Fires from Exterior (외장재에 의한 동시다발적인 화재의 피난위험성에 관한 연구)

  • Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.48-54
    • /
    • 2012
  • In order to study on the evacuation risk when connate fires caused by vertical fire spread of the exterior occurs, the egress simulations based on the relevant scenarios has carried out. As a result of it, ASET (permitted evacuation time) was reached in between 550 to 650 seconds in entire floors after vertical smoke spread from fire of combustible exteriors. In particular, ASET was 358 seconds in the first floor, 490 seconds in the six floor and 473 seconds in the tenth floor. In addition, five floors of all levels, the 1st floor, the 6th floor and the 28th floor ~30th floor, show RSET (minimum evacuation time) which is bigger than ASET as evacuation risk. This result presents occupants in high rise buildings with more than 15 floors might not be able to egress of them using staircases due to huge population attempting to evacuate simultaneously. Particularly, 699 people in the upper levels by smoke from the first floor are having difficulty escaping this building since ASET on the first floor adjacent to the ignition point was 358 seconds which is relatively reached fast. Considering a prevention method of the fire and smoke spread, architects have to use non-combustible exterior in the building's facade to be required as an active fire protection system.

Analysis of Causes of and Solutions to the Stack Effect by Vertical Zoning of High-rise Buildings (초고층 건축물 수직조닝별 연돌효과의 원인 및 해결 방안 분석)

  • Shin, Sang Wook;Ryu, Jong Woo;Jeong, Hee Woong;Kim, Dae Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.483-493
    • /
    • 2021
  • Urban overcrowding has created an explosive supply and demand for high-rise buildings. High-rise buildings are contributing to enhancing the image of the city by serving as focal points, but due to the stack effect, malfunction of elevator doors, difficulties in opening and closing the doors and windows of the outer wall, smoke and odors spreading to the upper floors, noise, energy loss, fire and pollutants have been causing various unexpected problems such as rapid spread of fire. This study classified high-rise buildings according to their vertical zoning, analyzed the causes of and solutions to the stack effect, and derived design and construction methods. Through the initial plan to block the outside air and securing airtightness through precise construction, we sought ways to secure the airtightness inside and outside the building by actively blocking the airflow from the lower floors. In addition, the facility solution can be a measure to reduce the specific phenomena caused by the stack effect, but it should only be applied to the minimum extent because the potential for secondary damage is high. This study emphasized the need for systematic stack effect management by suggesting design and construction measures for each vertical zoning of the causes and countermeasures of the stack effect. It is expected that this study will be helpful not only for design and construction, but also for building maintenance.

A Study on the Change of Architecture Density and Residential Environment according to Reconstruction (재건축에 따른 건축밀도 및 주거환경의 변화 연구)

  • Kim, Hong-Bae
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.19 no.1
    • /
    • pp.35-42
    • /
    • 2017
  • This study aims to investigate the change in building density and residential environment after the reconstruction of decrepit public rental housing complexes formed in accordance with the Land Readjustment Project during the 1970s-80s. The results of this study can be summarized as follows: First, in terms of change in residential environment after the reconstruction, floor plans that were limited to two to four types and to small apartments measuring $42.9m^2$(13py)-$56.1m^2$ (17py) became varied, presenting 5-6 types of floor plans and various sizes of apartments. In particular, the reconstructed apartments were mainly built in a size smaller than 85($m^2$) and in the 3LDK floor plan and staircase-style unit architectural structure in order to reflect the lifestyle of residents. Second, in terms of change in building density after the reconstruction, the building coverage ratio did not change a lot, but the floor area ratio showed great change depending on the complex, ranging from a minimum of 2.9 times (Singdong Complex) to a maximum of 5.4 times (Eoyangdong Complex). Such change is attributable to the reconstruction policy that aims to improve the residential environment for original residents, secure economic feasibility and efficiency, and reflect the lifestyle of residents while incorporating dividends assigned to the existing housing project members as well as the maximum floor area ratio allowed by the regulation. Additionally, in terms of change in the number of floors and building density after the reconstruction, the former 5-story apartments were changed to apartments with 16-28 stories. Accordingly, the number of households in each complex has also increased by 20%. Third, according to the characteristics of parking facilities in terms of the size and density of parking spaces, former apartment complexes had only aboveground parking lots, not underground parking area. The newly constructed apartment complexes have underground parking space, and the parking-housing ratio is 1.1-1.3 cars.

Effect of Seismic Load on Residential RC Buildings under Construction Considering Construction Period (시공기간을 고려한 주거용 철근콘크리트 건물의 시공 중 지진하중 영향 분석)

  • Choi, Seong-Hyeon;Kim, Jea-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.4
    • /
    • pp.235-242
    • /
    • 2022
  • Compared with buildings that have already been constructed, buildings under construction may be more vulnerable to such natural disasters as earthquakes because the concrete strength is not yet sufficient. Currently, Korean design standards present minimum performance targets for each seismic grade of buildings, but the seismic load for design is based on a return period of 2400 years. However, because the construction period of the building is much shorter than the period of use of the building, the application of the earthquake return period of 2400 years to buildings under construction may be excessive. Therefore, in this study, a construction stage model of buildings with 5, 15, 25, and 60 floors was created to analyze earthquake loads during construction of residential reinforced concrete (RC) buildings. The structural stability was confirmed by applying reduced seismic loads according to the return period. As a result, the structural stability was checked for an earthquake of the return period selected according to the construction period, and the earthquake return period that can secure structural safety according to the size of the building was confirmed.