• Title/Summary/Keyword: Minimum Bactericidal Concentration (MBC)

Search Result 80, Processing Time 0.018 seconds

Antibacterial and Sporicidal Activity of Macelignan Isolated from Nutmeg (Myristica fragrans Houtt.) against Bacillus cereus

  • Rukayadi, Yaya;Lee, Kwan-Hyoung;Han, Sung-Hwa;Kim, Sung-Kyung;Hwang, Jae-Kwan
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1301-1304
    • /
    • 2009
  • Macelignan is a bioactive compound isolated from nutmeg (Myristica fragrans Houtt.) which has been traditionally used for the food and pharmaceutical purposes. In this study, the activities of macelignan against vegetative cells and spores of Bacillus cereus were evaluated in vitro. Our results showed that the vegetative cells of B. cereus were significantly inhibited in growth by macelignan with minimum inhibitory concentration (MIC) of $4{\mu}g/mL$. The vegetative cells of B. cereus were completely killed with minimum bactericidal concentration (MBC) of $8{\mu}g/mL$ of macelignan. Killing time of macelignan against vegetative cells of B. cereus was very fast; endpoint of macelignan was reached after 4 hr of incubation at $4{\times}MIC$. Macelignan inactivated more than 3-log (99.9%) of spores/mL of B. cereus at the concentration of $100{\mu}g/mL$. Macelignan was found to be effective against vegetative cells and spores of B. cereus. These results suggest that macelignan might be good to be developed as a food preservative.

Synergistic Antibacterial Activity of Fig (Ficus carica) Leaves Extract Against Clinical Isolates of Methicillin-resistant Staphylococcus aureus (병원내에서 분리된 메티실린내성 황색포도상구균에 대한 무화과잎 추출물의 항미생물효과)

  • Lee, Young-Soo;Cha, Jeong-Dan
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.405-413
    • /
    • 2010
  • Fig (Ficus carica L.) belongs to the mulberry tree (Moraceae) which is one of the oldest fruits in the world. It has been used as a digestion promoter and a cure for ulcerative inflammation and eruption in Korea. The present study investigated the antimicrobial activity of methanol (MeOH) extract of fig leaves against methicillin-resistant Staphylococcus aureus (MRSA) isolated in clinic. The MeOH extract (MICs, 2.5 to 20 mg/mL; MBCs, 5 to 20 mg/mL) was demonstrated as antibacterial activity in isolates MRSA 1-20. The administration of the MeOH extract in combination with oxacillin or ampicillin induced a reduction of ${\geq}$4-8-fold in all tested bacteria, which was considered to be synergistic based on a FICI of ${\leq}$0.375-0.5. Furthermore, time-kill study was found that a combination of MeOH extract with oxacillin or ampicillin produced a more rapid decrease in the concentration of bacteria CFU/mL than MeOH extract alone. The results suggest that fig leaves could be employed as a natural antibacterial agent in MRSA infection care products.

Effects of Omeprazole and Caffeine Alone and in Combination with Gentamicin and Ciprofloxacin Against Antibiotic Resistant Staphylococcus Aureus and Escherichia Coli Strains

  • Bazzaz, Bibi Sedigheh Fazly;Fakori, Mahmoud;Khameneh, Bahman;Hosseinzadeh, Hossein
    • Journal of Pharmacopuncture
    • /
    • v.22 no.1
    • /
    • pp.49-54
    • /
    • 2019
  • Objective: Antibiotic resistance is a global health problem and threatens health of societies. These problems have led to a search for alternative approaches such as combination therapy. The aim of the present study was to investigate the effect of caffeine and omeprazole in combination with gentamicin or ciprofloxacin against standard and clinically resistant isolates of Staphylococcus aureus and Escherichia coli. Methods: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of different agents against bacterial strains were determined. The interaction of non- antibiotic drugs with gentamicin and ciprofloxacin was studied in vitro using a checkerboard method and calculating fraction inhibitory concentration index (FICI). Verapamil as efflux pump inhibitor was used to evaluate the possible mechanism of bacterial resistance to antibiotics. Results: The MIC and MBC values of gentamicin against bacterial strains were in the range of $20-80{\mu}g/ml$ and $40-200{\mu}g/ml$, respectively. Caffeine and omeprazole had no intrinsic inhibitory activity against tested microorganisms. However, upon combination of caffeine with antibiotics, the synergistic effects were observed. Verapamil was able to reduce the MIC values of gentamicin (4 folds) only in some bacterial strains. Conclusion: These findings indicated that caffeine was effective in removing bacterial infection caused by S. aureus and E. coli. The relevant mechanisms of antibiotic resistance were not related to the drug efflux.

Study on the Efficacies of Anti-acne Cosmetic Containing Lactonic Hydroxy Acid for Improving Acne Skin Care (락톤형 하이드록시애씨드를 적용한 여드름 피부 개선 화장품 효능 연구)

  • Moonki Baek;Bum-Ho Bin
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.3
    • /
    • pp.279-288
    • /
    • 2024
  • This study investigates the efficacy of anti-acne cosmetics containing lactonic hydroxy acid, specifically gluconodeltalactone (GDL), in improving acne skin treatment. In sebaceous cells induced by linoleic acid, GDL at concentrations of 1.0 mg/mL or higher demonstrated a concentration-dependent inhibition of lipid synthesis. Antibacterial activity of GDL against Cutibacterium acnes (C. acnes) was confirmed through minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Based on these in vitro results, a clinical test was conducted involving 65 participants to evaluate the effects of a anti-acne cosmetic formulation containing 3% GDL over an eight-week period. The results indicated a statistically significant improvement (p < 0.05) in both inflammatory acne lesions (papules, pustules, and nodules) and non-inflammatory lesions (comedones) from as early as two weeks of application, without any reported skin irritation. The results confirm that cosmetics with GDL can be used effectively and safely without long-term skin irritation, even for consumers with sensitive acne-prone skin.

ANTIMICROBIAL EFFECT OF ESSENTIAL OILS ON ORAL BACTERIA (구강 내 세균에 대한 Essential oil의 항균효과에 관한 연구)

  • Lee, Sun-Young;Kim, Jae-Gon;Baik, Byeong-Ju;Yang, Yeon-Mi;Lee, Kyung-Yeol;Lee, Yong-Hoon;Kim, Mi-A
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Essential oils are mixture of volatile, lipophilic compounds originating from plants. Essential oils have potential biological effects, i.e., antibacterial, antifungal, spasmolytic and antiplasmodial activities and insect-repellent property. In this study, five essential oils, namely R, LG, FR, O, and NM, extracted from various aromatic plants were used to test their antimicrobial activity against the oral microorganisms. The effects of essential oils were investigated against eight important bacteria, Streptococcus mutans (S. mutans), Staphylococcus aureus (S. aureus), Streptococcus sanguis (S. sanguis), Streptococcus anginosus (S. anginosus), Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans), Streptococcus sobrinus (S. sobrinus), Staphylococcus epidermidis (S. epidermidis), and Escherichia coli (E. coli). Essential oils, except NM, effectively inhibited the growth of tested oral pathogenic microorganisms dose-dependently. However, the essential oils didn't show a significant inhibitory effect against E. coli and S. epidermidis. Consequently, these results represented that essential oil-mediated anti-microbial activity was prominent against the oral pathogenic bacteria. For example, minimum bactericidal concentration(MBC) of R, LG, FR oil against A. actinomycetemcomitans was very low as 0.078 mg/mL. In addition, minimum inhibitory concentration (MIC) of R, LG, FR, O oil against S. mutans was low as 0.156 mg/mL in vitro.

  • PDF

Antimicrobial activity of Prunus mume extract to oral microbes (매실추출물(PME)의 구강 미생물에 대한 항균작용)

  • Jang, Jong-Hwa;Kim, Young-In;Lee, Hyun
    • Journal of Korean society of Dental Hygiene
    • /
    • v.14 no.1
    • /
    • pp.109-115
    • /
    • 2014
  • Objectives : Prunus mume has been used for the folk medicine from old times. The purpose of the study was to investigate the antimicrobial activity of prunus mume extract to various oral microbes. Methods : This study was carried out to examine the antimicrobial effect of Prunus mume extract against oral microbes. Data were collected using a Dentocult SM Strip mutans and Dentocult LB Strip mutans from April 5 to May 4, 2013. A total of 36 experimental and 32 control group were selected for this study. Results : The MIC of Prunus mume extract was tested for 0.39% in S. mutans, S. salivarius and S. auerus, 0.78% in S. mitis, S. equi and E. coli. In vivo, experimental group showed significantly the lower Streptococcus mutans levels by the use of the gum contained Prunus mume extract from 15 days compared with control group(p=0.012). The reduction was more significant in Lactobacilli level of the experimental group than the control group(p=0.022). Conclusions : These findings suggest that the oral products containing Prunus mume extracts is effective in preventing oral diseases.

Antibacterial Activity of Panduratin A and Isopanduratin A Isolated from Kaempferia pandurata Roxb. against Acne-causing Microorganisms

  • Song, Min-Soo;Shim, Jae-Seok;Gwon, Song-Hui;Lee, Chan-Woo;Kim, Han-Sung;Hwang, Jae-Kwan
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1357-1360
    • /
    • 2008
  • Propionibacterium acnes is the predominant organism in sebaceous regions of the skin and is thought to play an important role in the pathogenesis of inflamed lesions. Antibacterial compounds against P. acnes were isolated from the ethanol extract of Kaempferia pandurata Roxb. and identified as panduratin A and isopanduratin A. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of panduratin A for P. acnes were 2 and $4{\mu}g/mL$, respectively, while those of isopanduratin A were 4 and $8{\mu}g/mL$, respectively. The time-dependent killing effect showed that panduratin A and isopanduratin A completely inhibited the growth of P. acnes at 4 and $8{\mu}g/mL$ in 48 hr, respectively. Panduratin A and isopanduratin A demonstrated high antibacterial activities not only against P. acnes but also other skin microorganisms. The results suggest that panduratin A and isopanduratin A could be employed as natural antibacterial agents to inhibit the growth of acne and skin disease causing microorganisms.

Uncovering the Antibacterial Potential of a Peptide-Rich Extract of Edible Bird's Nest against Staphylococcus aureus

  • Thi-Phuong Nguyen;Tang Van Duong;Thai Quang Le;Khoa Thi Nguyen
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.8
    • /
    • pp.1680-1687
    • /
    • 2024
  • The diverse pharmacological properties of edible bird's nest (EBN) have been elucidated in recent years; however, investigations into its antibacterial effects are still limited. In the present study, we explored the antibacterial activity of a peptide-rich extract of EBN against Staphylococcus aureus, a notorious pathogen. The EBN extract (EEE) was prepared by soaking EBN in 80% ethanol for 2 days at 60℃. Biochemical analyses showed that peptides at the molecular weight range of 1.7-10 kDa were the major biochemical compounds in the EEE. The extract exhibited strong inhibition against S. aureus at a minimum inhibitory concentration (MIC) of 125 ㎍/ml and a minimum bactericidal concentration (MBC) of 250 ㎍/ml. This activity could be attributed to the impact of the extract on cell membrane integrity and potential, biofilm formation, and reactive oxidative species (ROS) production. Notably, the expression of biofilm- and ROS-associated genes, including intercellular adhesion A (icaA), icaB, icaC, icaD, and superoxide dismutase A (sodA), were deregulated in S. aureus upon the extract treatment. Our findings indicate a noteworthy pharmacological activity of EBN that could have potential application in the control of S. aureus.

Antimicrobial Activity of Berberine against Oral Bacteria Related to Endodontic Infections

  • Lee, Dongkyun;Kim, Min Jung;Park, Soon-Nang;Lim, Yun Kyong;Min, Jeong-Beom;Hwang, Ho-Keel;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.38 no.4
    • /
    • pp.141-147
    • /
    • 2013
  • It has been established that berberine has strong antimicrobial effects. Little is known however regarding the antimicrobial activity of berberine against endodontic pathogenic bacteria or its cytotoxicity in human oral tissue cells. The antibacterial properties of berberine were tested against 5 strains of Enterococcus faecalis and type strains of Aggregatibacter actinomycetemcomitans, Prevotella nigrescens, Prevotella intermedia, and Tannerella forsythia, which are involved in endodontic infections. Antimicrobial activity was evaluated through minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) measurements. The viability of normal human gingival fibroblast (NHGF) cells after exposure to berberine was measured using a methyl thiazolyl tetrazolium (MTT) assay. The data showed that berberine has antimicrobial effects against A. actinomycetemcomitans with an MIC and MBC of $12.5{\mu}g/ml$ and $25{\mu}g/ml$, respectively. In the cytotoxicity studies, cell viability was maintained at 66.1% following exposure to $31.3{\mu}g/ml$ berberine. Overall, these findings suggest that berberine has antimicrobial activity against the tested bacteria. Nevertheless, lower concentrations in combination with other reagents will need to be tested before these in vitro results can be translated to clinical use.

Antibacterial effect of citrus press-cakes dried by high speed and far-infrared radiation drying methods

  • Samarakoon, Kalpa;Senevirathne, Mahinda;Lee, Won-Woo;Kim, Young-Tae;Kim, Jae-Il;Oh, Myung-Cheol;Jeon, You-Jin
    • Nutrition Research and Practice
    • /
    • v.6 no.3
    • /
    • pp.187-194
    • /
    • 2012
  • In this study, the antibacterial effect was evaluated to determine the benefits of high speed drying (HSD) and far-infrared radiation drying (FIR) compared to the freeze drying (FD) method. Citrus press-cakes (CPCs) are released as a by-product in the citrus processing industry. Previous studies have shown that the HSD and FIR drying methods are much more economical for drying time and mass drying than those of FD, even though FD is the most qualified drying method. The disk diffusion assay was conducted, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined with methanol extracts of the dried CPCs against 11 fish and five food-related pathogenic bacteria. The disk diffusion results indicated that the CPCs dried by HSD, FIR, and FD prevented growth of all tested bacteria almost identically. The MIC and MBC results showed a range from 0.5-8.0 mg/mL and 1.0-16.0 mg/mL respectively. Scanning electron microscopy indicated that the extracts changed the morphology of the bacteria cell wall, leading to destruction. These results suggest that CPCs dried by HSD and FIR showed strong antibacterial activity against pathogenic bacteria and are more useful drying methods than that of the classic FD method in CPCs utilization.