DOI QR코드

DOI QR Code

Uncovering the Antibacterial Potential of a Peptide-Rich Extract of Edible Bird's Nest against Staphylococcus aureus

  • Thi-Phuong Nguyen (NTT Hi-Tech Institute, Nguyen Tat Thanh University) ;
  • Tang Van Duong (Vietnam National Museum of Nature, Vietnam Academy of Science and Technology) ;
  • Thai Quang Le (NTT Hi-Tech Institute, Nguyen Tat Thanh University) ;
  • Khoa Thi Nguyen (NTT Hi-Tech Institute, Nguyen Tat Thanh University)
  • Received : 2024.02.29
  • Accepted : 2024.06.25
  • Published : 2024.08.28

Abstract

The diverse pharmacological properties of edible bird's nest (EBN) have been elucidated in recent years; however, investigations into its antibacterial effects are still limited. In the present study, we explored the antibacterial activity of a peptide-rich extract of EBN against Staphylococcus aureus, a notorious pathogen. The EBN extract (EEE) was prepared by soaking EBN in 80% ethanol for 2 days at 60℃. Biochemical analyses showed that peptides at the molecular weight range of 1.7-10 kDa were the major biochemical compounds in the EEE. The extract exhibited strong inhibition against S. aureus at a minimum inhibitory concentration (MIC) of 125 ㎍/ml and a minimum bactericidal concentration (MBC) of 250 ㎍/ml. This activity could be attributed to the impact of the extract on cell membrane integrity and potential, biofilm formation, and reactive oxidative species (ROS) production. Notably, the expression of biofilm- and ROS-associated genes, including intercellular adhesion A (icaA), icaB, icaC, icaD, and superoxide dismutase A (sodA), were deregulated in S. aureus upon the extract treatment. Our findings indicate a noteworthy pharmacological activity of EBN that could have potential application in the control of S. aureus.

Keywords

Acknowledgement

We are grateful to Phuoc Loc Thi Nguyen, Director of Phuoc Tin Development Trading Service Company, Ltd. for kindly providing edible bird's nest. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  1. Kathan RH, Weeks DI. 1969. Structure studies of collocalia mucoid. I. Carbohydrate and amino acid composition. Arch. Biochem. Biophys. 134: 572-576. 
  2. Marcone MF. 2005. Characterization of the edible bird's nest the 'Caviar of the East'. Food Res. Int. 38: 1125-1134. 
  3. Chok KC, Ng MG, Ng KY, Koh RY, Tiong YL, Chye SM. 2021. Edible bird's nest: recent updates and industry insights based on laboratory findings. Front. Pharmacol. 12: 746656. 
  4. Fan Q, Lian J, Liu X, Zou F, Wang X, Chen M. 2021. A study on the skin whitening activity of digesta from edible bird's nest: a mucin glycoprotein. Gels 8: 24. 
  5. Guo CT, Takahashi T, Bukawa W, Takahashi N, Yagi H, Kato K, et al. 2006. Edible bird's nest extract inhibits influenza virus infection. Antiviral. Res. 70: 140-146. 
  6. Bai W, Deng F, Zhang X, Han Y, Xiao Ye, Wang N, et al. 2023. The determination of epidermal growth factor in Edible bird's nest by enzyme-linked immunosorbent assay. Appl. Biol. Chem. 66: 1-9. 
  7. Hou Z, Imam MU, Ismail M, Azmi NH, Ismail N, Ideris A, et al. 2015. Lactoferrin and ovotransferrin contribute toward antioxidative effects of edible bird's nest against hydrogen peroxide-induced oxidative stress in human SH-SY5Y cells. Biosci. Biotechnol. Biochem. 79: 1570-1578. 
  8. Babji A, Syarmila EI, D'Aliah N, Nadia NM, Akbar HD, Norrakiah A, et al. 2018. Assessment on bioactive components of hydrolysed edible bird nest. Int. Food Res. J. 25: 1936-1941. 
  9. Hun LT, Wani WA, Tjih ETT, Adnan NA, Le Ling Y, Aziz RA. 2015. Investigations into the physicochemical, biochemical and antibacterial properties of edible bird's nest. Chem. Pharm. Res. 7: 228-247. 
  10. Saengkrajang W, Matan N. 2011. Antimicrobial activities of the edible bird's nest extracts against food-borne pathogens. Thai J. Agric. Sci. 44: 326-330. 
  11. Chen W, Hwang YY, Gleaton JW, Titus JK, Hamlin N. 2018. Optimization of a peptide extraction and LC-MS protocol for quantitative analysis of antimicrobial peptides. Future Sci. OA 5: FSO348. 
  12. Plaskova A, Mlcek J. 2023. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front. Nutr. 10: 1118761. 
  13. Cheung GY, Bae JS, Otto M. 2021. Pathogenicity and virulence of Staphylococcus aureus. Virulence 12: 547-569. 
  14. Prakobdi C, Saetear P. 2023. Iodoform reaction-based turbidimetry for analysis of alcohols in hand sanitizers. Analytica 4: 239-249. 
  15. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. 
  16. Das B, Al-Amin M, Russel S, Kabir S, Bhattacherjee R, Hannan J. 2014. Phytochemical screening and evaluation of analgesic activity of Oroxylum indicum. Indian J. Pharm. Sci. 76: 571-575. 
  17. Kancherla N, Dhakshinamoothi A, Chitra K, Komaram RB. 2019. Preliminary analysis of phytoconstituents and evaluation of anthelminthic property of Cayratia auriculata (in vitro). Maedica 14: 350-356. 
  18. Sreevidya N, Mehrotra S. 2003. Spectrophotometric method for estimation of alkaloids precipitable with Dragendorff 's reagent in plant materials. J. AOAC Int. 86: 1124-1127. 
  19. Nguyen TP, Vu Thi NA, Nguyen Diep XN, Nguyen T, Bui L. 2022. Antimicrobial resistance tendency and collateral sensitivity of Staphylococcus aureus adapted to antibiotics or extracts of medicinal plants grown in Vietnam. Lett. Appl. Microbiol. 75: 616-622. 
  20. Zhang LL, Zhang LF, Xu JG. 2020. Chemical composition, antibacterial activity and action mechanism of different extracts from hawthorn (Crataegus pinnatifida Bge.). Sci. Rep. 10: 8876. 
  21. Wan Y, Wang X, Zhang P, Zhang M, Kou M, Shi C, et al. 2021. Control of foodborne Staphylococcus aureus by shikonin, a natural extract. Foods 10: 2954. 
  22. Wen Z, Zhao Y, Gong Z, Tang Y, Xiong Y, Chen J, et al. 2022. The mechanism of action of Ginkgolic acid (15: 1) against gram-positive bacteria involves cross talk with iron homeostasis. Microbiol. Spectr. 10: e0099121. 
  23. Ninganagouda S, Rathod V, Singh D, Hiremath J, Singh AK, Mathew J. 2014. Growth kinetics and mechanistic action of reactive oxygen species released by silver nanoparticles from Aspergillus niger on Escherichia coli. Biomed Res. Int. 2014: 753419. 
  24. Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3: 1101-1108. 
  25. Reeks BY, Champlin FR, Paulsen DB, Scruggs DW, Lawrence ML. 2005. Effects of sub-minimum inhibitory concentration antibiotic levels and temperature on growth kinetics and outer membrane protein expression in Mannheimia haemolytica and Haemophilus somnus. Can. J. Vet. Res. 69: 1-10. 
  26. Yousefpour Z, Davarzani F, Owlia P. 2021. Evaluating of the effects of sub-MIC concentrations of gentamicin on biofilm formation in clinical isolates of Pseudomonas aeruginosa. Iran. J. Pathol. 16: 403-410. 
  27. Li X, Zuo S, Wang B, Zhang K, Wang Y. 2022. Antimicrobial mechanisms and clinical application prospects of antimicrobial peptides. Molecules 27: 2675. 
  28. Clementi EA, Marks LR, Roche-Hakansson H, Hakansson A. 2014. Monitoring changes in membrane polarity, membrane integrity, and intracellular ion concentrations in Streptococcus pneumoniae using fluorescent dyes. J. Vis. Exp. 17: e51008. 
  29. Jepras RI, Paul FE, Pearson SC, Wilkinson MJ. 1997. Rapid assessment of antibiotic effects on Escherichia coli by bis-(1, 3-dibutylbarbituric acid) trimethine oxonol and flow cytometry. Antimicrob. Agents Chemother. 41: 2001-2005. 
  30. Muhammad MH, Idris AL, Fan X, Guo Y, Yu Y, Jin X, et al. 2020. Beyond risk: bacterial biofilms and their regulating approaches. Front. Microbiol. 11: 928. 
  31. Vaishampayan A, Grohmann E. 2021. Antimicrobials functioning through ros-mediated mechanisms: current insights. Microorganisms 10: 61-70. 
  32. Idrees M, Sawant S, Karodia N, Rahman AJIJoER, Health P. 2021. Staphylococcus aureus biofilm: morphology, genetics, pathogenesis and treatment strategies. Int. J. Environ. Res. Public Health. 18: 7602. 
  33. Karavolos MH, Horsburgh MJ, Ingham E, Foster S. 2003. Role and regulation of the superoxide dismutases of Staphylococcus aureus. Microbiology 149: 2749-2758. 
  34. Permatasari HK, Permatasari QI, Taslim NA, Subali D, Kurniawan R, Surya R, et al. 2023. Revealing edible bird nest as novel functional foods in combating metabolic syndrome: comprehensive in silico, in vitro, and in vivo studies. Nutrients 15: 3886. 
  35. Quek MC, Chin NL, Yusof YA, Law CL, Tan SW. 2018. Characterization of edible bird's nest of different production, species and geographical origins using nutritional composition, physicochemical properties and antioxidant activities. Food Res. Int. 109: 35-43. 
  36. Racusen D and Foote M. 1963. Solubility of bean leaf protein in ethanol. Nature 197: 697-698. 
  37. Wang B, Li ZR, Chi CF, Zhang QH, Luo HY. 2012. Preparation and evaluation of antioxidant peptides from ethanol-soluble proteins hydrolysate of Sphyrna lewini muscle. Peptides 36: 240-250. 
  38. Wang X, Hu D, Liao F, Chen S, Meng Y, Dai J, et al. 2023. Comparative proteomic analysis of edible bird's nest from different origins. Sci. Rep. 13: 15859. 
  39. Wu WJ, Li LF, Cheng HY, Fung HY, Kong HY, Wong TL, et al. 2022. Qualitative and quantitative analysis of edible bird's nest based on peptide markers by LC-QTOF-MS/MS. Molecules 27: 2945. 
  40. Gasu EN, Ahor HS, Borquaye LS. 2018. Peptide extract from Olivancillaria hiatula exhibits broad-spectrum antibacterial activity. Biomed Res. Int. 2018: 6010572. 
  41. Ogbole OO, Ndabai NC, Akinleye TE, Attah AFJBcm, therapies. 2020. Evaluation of peptide-rich root extracts of Calliandria portoriscensis (Jacq.) Benth (Mimosaceae) for in vitro antimicrobial activity and brine shrimp lethality. BMC Complement. Med. Ther. 20: 30. 
  42. Mohammad H, Thangamani S, N Seleem M. 2015. Antimicrobial peptides and peptidomimetics-potent therapeutic allies for staphylococcal infections. Curr. Pharm. Des. 21: 2073-2088.