• 제목/요약/키워드: Miniature Specimen

검색결과 23건 처리시간 0.024초

Deformation Characteristics of Miniature Tensile Specimens of a SA 508 C1.3 Reactor Pressure Vessel Steel

  • Byun, Thak-Sang;Chi, Se-Hwan;Hong, Jun-Hwa;Jeong, Ill-Seok;Hong, Sung-Yull
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(4)
    • /
    • pp.182-187
    • /
    • 1996
  • Deformation characteristics of miniature plate tensile specimens have been studied to develop the thickness requirement and a correlation to estimate the mechanical properties of bulk material from miniature specimen data. The material used was a SA 508 C1.3 reactor pressure vessel steel and the thicknesses of miniature tensile specimens varied from ().12 m to 2 mm. The effects of thickness on the tensile deformation properties such as strength, ductility, and necking characteristics were analyzed. The yield and ultimate tensile strengths were independent of specimen thickness when the thickness was larger than about 0.2 mm. The uniform and total elongations decreased as the specimen thickness decreased. It was also observed that the uniform strain component in the width direction decreased with decrease in the specimen thickness, however, that in the thickness direction was rather constant in total thickness range studied. Based on this observation and a relationship between the necking angle and the ratio between strain components, a correlation between the uniform elongations of miniature specimen and standard specimen was derived. The uniform elongations calculated by this new correlation agreed well with the measured values.

  • PDF

미세 스탬핑용 박판소재의 물성치 측정 (Measurement of Material Properties for Miniature Stamping)

  • 김양수;심현보
    • 소성∙가공
    • /
    • 제15권3호
    • /
    • pp.247-254
    • /
    • 2006
  • Rather than traditional manufacturing processes, miniature manufacturing processes usually require sophisticated equipments and characteristics of the processes of high cost and of low productivity. Contrarily, miniature stamping process can be realized in a low cost high productivity with relatively inexpensive equipments. In the meso scale, mechanical properties, especially work hardening characteristics, are discovered to be statically scattered and size dependent by intensive experimental and numerical investigations, which make the stamping process hard to apply to the miniature manufacturing. In this study, dual purpose experimental device that can be used for both miniature scale tensile test and miniature scale stamping by simple change of attachment has been developed. For the tensile test, the elongation has been measured with a combined use of a CCD camera and a linear encoder in order to account for the possibility of slippage between specimen and the grip and to ensure the accuracy of the measurement, while load has been measured with a load cell. To satisfy the required material properties for stamping, optimal annealing condition has been found by examining the microstructure of annealed specimen.

하이드로포밍 공정 전후의 인장 및 피로 물성 변화 (The Variations of Tensile and Fatigue Properties in the Hydroforming Process)

  • 오충석;권순규;최병익
    • 한국정밀공학회지
    • /
    • 제24권12호
    • /
    • pp.111-118
    • /
    • 2007
  • Hydroforming is a cost-effective way of shaping malleable metals such as steel into lightweight, structurally stiff and strong pieces. With the increased use of the hydroformed components in automotive and aerospace industries, it is important to know the variations of the mechanical properties in the hydroforming process far the safe and durable design purposes. The principal goal of this paper is to suggest a procedure to evaluate the variations of tensile and fatigue properties before and after a hydroforming process. A miniature specimen, which is 0.2 mm thick and 2.3 mm wide, is devised and tested to measure local mechanical properties. The effects of specimen size, defects, surface roughness, and hydroforming on the tensile and fatigue behaviors are discussed.

SP 크리프 시험의 유한요소해석을 이용한 재료물성 평가 (Assessment of Material Properties Using Finite Element Analysis for Small Punch Creep Testing)

  • 박태규;마영화;윤기봉;정일석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.511-516
    • /
    • 2001
  • Recently small punch creep testing (or miniature disc bend creep test) has received much attention through European collaborative research projects. This method was considered as a substitute for the conventional creep rupture testing by which the residual creep life is measured from the specimen taken out from serviced components of high temperature plants. It would be beneficial if the material creep properties such as power law creep constants as well as the creep rupture life can be measured from the small punch creep test. In this paper a method of assessing creep constants from the small punch creep testing is proposed. Finite element analyses were performed to investigate evolution of stress and strain rate at the weakest locations of the small punch creep specimen. Elastic-plastic-secondary creep analyses were carried out. The estimation equations for creep constants by the small punch creep testing are proposed based on the finite analysis results. Small punch creep tests were also performed with 9Cr steel and the accuracy of the proposed equation was verified by the experimental results.

  • PDF

소형펀치 크리프 시험을 이용한 9Cr강의 크리프 상수 평가 (Assessment of Creep Properties of 9Cr Steel Using Small Punch Creep Testing)

  • 윤기봉;박태규;심상훈;정일석
    • 대한기계학회논문집A
    • /
    • 제25권9호
    • /
    • pp.1493-1500
    • /
    • 2001
  • Recently small punch creep testing (or miniature disc bend creep test) has received much attention through European collaborative research projects. This method was considered as a substitute for the conventional creep rupture testing by which the residual creep life is measured from the specimen taken out from serviced components of high temperature plants. It would be beneficial if the material creep properties such as power law creep constants as well as the creep rupture life can be measured from the small punch creep test. In this paper a method of assessing creep constants from the small punch creep testing is proposed. Finite element analyses were performed to investigate evolution of stress and strain rate at the weakest locations of the small punch creep specimen. Elastic-plastic-secondary creep analyses were carried out. The estimation equations for creep constants by the small punch creep testing are proposed based on the finite analysis results. Small punch creep tests were also performed with 9Cr steel and the accuracy of the proposed equation was verified by the experimental results.

프리즘을 이용한 소형 단백질칩 분석 형광측정 시스템 개발 (Miniature Fluorescence Detection System for Protein Chips by Prism)

  • 최재호;김호성;이국녕;김은미;김용권;김병기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.2040-2042
    • /
    • 2004
  • This paper presents a miniature optical system for the fluorescence detection of the patterned protein chip. The patterned protein chip was fabricated using MEMS process. The fluorescence from the patterned protein chip was measured while varying the concentration of the BSA. The fluorescence light is separated spatially from the excitation beam using mini-size prism to increase SNR (Signal-to-Noise Ratio). The combination of prism and mirrors can convert the excitation light from the laser diode to uniform illumination on the specimen. We believe that the proposed system for fluorescence detection can be applied to rea1ization of point-of-care.

  • PDF

인장변형에 의한 강판의 직교이방성 대칭축의 회전 (Rotation of Orthotropy Axes of Steel Sheets by Tensile Elongation)

  • 인정제;김권희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 추계학술대회 논문집
    • /
    • pp.33-43
    • /
    • 1994
  • A series of tensile tests have been performed to investigate the hardening behavior of rolled steel sheets. Tensile tests consist of three stages. At the 1st stage, full size tensile specimens were prestrained in the direction of rolling, then mid-sized tensile specimens were cut from the gauge sections of the full size specimens at angles to the rolling direction. At the 2nd stage, mid-sized specimens were prestrained by predetermined magnitudes of strains and miniature tensile specimens were prepared from each of the mid-sized specimens at every 10 degrees. At the final stage, from tests on miniature tensile specimens the hardening behavior of the prestrained sheets has been investigated. According to the experimental results, orthotropic symmetry is reserved during tensile elongation, and one of the orthotropy axes is continuously rotated to specimen axis. Existing theories seem to fail to explain the rotation of orthotropy axis. A new phenomenological model is proposed to explain the strain induced rotation of orthotropy axes.

  • PDF

평면응력하에서의 직교이방성 대칭축의 회전 (Rotation of Orthotropy Axes under Plane Stress)

  • 인정제;김권희
    • 소성∙가공
    • /
    • 제3권3호
    • /
    • pp.320-334
    • /
    • 1994
  • A set of full size cold rolled steel sheets has been prestrained in the direction of rolling by uniform tensile elongation of 3% and 6%. Then mid-sized tensile specimens were cut from each of the full size sheets at 30, 45, 60 and 90 degrees to the rolling direction. The mid-sized tensile specimens were then prestrained again by uniform tensile elongation by 1%, 2%, 5%, 10% and 15%. finally, miniature tensile specimens were prepared from each of the mid-sized specimens at every 10 degrees to the specimen axis. From the tensile tests on miniature specimens material's hardening behavior under non-proportional loading has been investigated. There are a number of new observations which has not been known to the authors before current work. One of them is continuous reservation of orthoropic symmetry during tensile elongation of mid-sized specimens. Another is continuous rotations of orthotropy axes. Existing theories seem to fail to explain this observations. A new model is proposed in relation to the rotation of orthotropy axes.

  • PDF

구조물의 비접촉 비파괴 검사를 위한 레이저 초음파법 적용 (A Structure Non-Contact and Non-destructive Evaluation Using Laser-Ultrasonics Application)

  • 김재열;송경석;양동조;김유홍
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.71-76
    • /
    • 2005
  • The defects evaluation of the interior and the surface would be considered as vital characteristics in predicting the total life span of the steel structure. More importantly, the understandings in the interior composite of welding zone and the notifications in the presence, the formation, and the positioning of the non-metallic inclusion are necessary as well, since there were signs of relatively high defect frequency presented in the welding zone. The ultrasonic testing is a highly recommended technique chosen from among other techniques because of variety of advantages in conducting the non-destructive testing for the welding zone. However, the ultrasonic testing had technical disadvantages referred as followings; the problems due to the couplant between the PZT and the specimen, the formations that were miniature and complex, the moving subject, and the high temperature surrounding the specimen. This research was conducted to resolve the technical disadvantages of the contact ultrasonic testing by studying the non-contact ultrasonic testing where the ultrasonic waves were transferred by the laser, and revealing the specimen defects at its interior part and its surface part. The ultimate goal of this research was to develop a non-destructive evaluation applying the laser manipulated ultrasonic method for the steel structure.

  • PDF