• Title/Summary/Keyword: Mineralogy

Search Result 470, Processing Time 0.024 seconds

Contrasting Styles of Gold and Silver Mineralization in the Central and Southeastern Korea (한국 중부와 동남부지역 금·은광화작용의 성인적 특성)

  • Choi, Seon-Gyu;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.587-597
    • /
    • 1995
  • Two distinct precious-metal mineralizations actively occur at central and southeastern Korea which display consistent relationships among geologic, geochemical and genetic environments. A large number of preciousmetal vein deposits in the central Korea occur in or near Mesozoic granite batholiths elongated in a NE-SW direction. Whereas, gold and/or silver deposits in the southeastern Korea occur within Cretaceous volcanic and sedimentary rocks. However, most of the precious-metal deposits in the southeastern Korea show characteristics of the silver-rich deposits than the gold-rich deposits in the central Korea. Two epochs of main igneous activities are recognized: a) Jurassic Daebo igneous activity between 121 and 183 Ma, and b) Cretaceous Bulgugsa igneous activity between 60 and 110 Ma. Precious-metal mineralization took place between 158 and 71 Ma, coinciding with portions of the two magmatic activities. Contrasts in the style of mineralization, together with radiometric age data and differences in geologic settings reflect the genetically variable natures of hydrothermal activities from middle Jurassic to late Cretaceous time. The compilation and re-evaluation of these data suggest that the genetic types of hydrothermal precious-metal vein deposits in the central and southeastern Korea varied with time. The Jurassic and early Cretaceous mineralizations are characterized by the Au-dominant type, but tend to change to the Au-Ag and/or Ag-dominant types at late Cretaceous. The Jurassic Au-dominant deposits commonly show several characteristics; prominent associations with pegmatites, simple massive vein morphologies, high fmeness values in ore-concentrating parts, and a distinctively simple ore mineralogy such as Fe-rich sphalerite, galena, chalcopyrite, Au-rich electrum, pyrrhotite and/or pyrite. The Cretaceous precious-metal deposits are generally characterized by some- features such as complex vein morphologies, low to medium fmeness values in the ore concentrates, and abundance of ore minerals including Ag sulfosalts, Ag sulfides, Ag tellurides and native silver. Mineralogical and fluid inclusion studies indicate that the Jurassic Au-dominant deposits in the central area were formed at the high temperature (about $300^{\circ}$ to $500^{\circ}C$) and pressure (about 4 to 5 kbars), whereas mineralizations of the Cretaceous Au-Ag and Ag-dominant deposits were occurred at the low temperature (about $200^{\circ}$ to $350^{\circ}C$) and pressure (<0.5 kbars) from the ore fluids containing more amounts of less-evolved meteoric waters.

  • PDF

Mineralogical and Geochemical Characteristics and Designation of Key Beds for the Effective Surveys in the Jeonnam Clay Deposits (전남일원 점토광상의 광물 및 지화학적 특성과 효과적 탐사를 위한 건층의 선정)

  • Yoo, Jang-Han;Koh, Sang-Mo;Moon, Dong-Hyuk
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.265-278
    • /
    • 2011
  • Clayey ores of the Jeonnam province mainly consist of pyrophyllite (monoclinic), kaolinite (1T), and minor amounts of quartz, muscovite, and feldspars. Mineralogical studies revealed that two kinds of clay minerals were mainly produced from the volcanic sediments with similar ages and compositions. Kaolinite deposits sometimes contain neither diaspore nor corundum, but alunites are often found in the upper portions of the kaolin ore bodies. On the other hand, corundum and diaspore are commoner in the pyrophyllite deposits than the kaolin deposits. As ages of rock formations are becoming younger, amounts of pyrophyllite and kaolinite are rather radically decreased, and finally disappeared. But muscovite, quartz, and plagioclase feldspars are inclined to be preserved because of weak alteration. Most of clay ore bodies contain purple tuff beds on the uppermost portion, and silicified beds, tuff, and lapillistone are found in an ascending order in the most of clay quarries. Chemical analyses show that higher contents of $Al_2O_3$ might not necessarily be due to the argillization, since some tuffs contain higher $Al_2O_3$ contents originated from feldspars. $SiO_2$ contents are fairly higher in the silicified beds than in those of adjacent formations, which might have been introduced from the ore bodies. And $K_2O$ contents are obviously lower than those of $Na_2O$ and CaO in the ores and their vicinities. Ignition losses of some of clays represent much higher contents than those of the ordinary ones because of the sporadic presence of alunite, diaspore and corundum which are accompanied with lots of $SO_4$ and $Al_2O_3$ contents. REE (rare earth element) abundances of most of volcanics and clay ores show rather higher LREE (light rare earth elements) contents, and represent small to moderately negative Eu anomalies. Though most of ores ususally show milky white color, fine-grained and well bedded formations which could be easily discernible in the most of outcrop. But more distinct characteristics are desirable where rather massive ore bodies exist. Purple tuffs and silicified beds above the ore bodies would be useful as marker horizons/key beds since they have rather obvious lithology, extension and mineralogy than those of other adjacent formations.

Structural Study of Selenium Sorption Complex of Fully Dehydrated, Partially Ca2+-exchanged Zeolite A (완전히 탈수되고 부분적으로 칼슘 이온으로 교환된 제올라이트 A의 셀레늄 수착 화합물의 구조 연구)

  • Kim, Hu Sik;Park, Jong Sam;Lim, Woo Taik
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.251-258
    • /
    • 2020
  • Single crystal of fully dehydrated and partially Ca2+-exchanged zeolites A (|Ca4Na4|[Si12Al12O48]-LTA) was brought into contact with Se in fine pyrex capillary at 523 K for 5 days. Crystal structure of Se-sorbed |Ca4Na4|[Si12Al12O48]-LTA has been determined by single-crystal X-ray diffraction techniques at 294 K in the cubic space group $Pm{\bar{3}}m$ (a = 12.2787(13) Å). The crystal structure of yellow |Ca4Na4Se4|[Si12Al12O48]-LTA has been refined to the final error indices of R1/wR2 = 0.0960/0.3483 with 327 reflections for which Fo > 4s(Fo). In this structure, 4 Na+ and 4 Ca2+ ions fill every 6-ring site: These ions are all found at three crystallographic positions, on 3-fold axes equipoints of opposite 6-rings. Selenium atoms are found at three crystallographically distinct positions: 2 Se atoms per unit cell at Se(1) are located opposite 6-rings in the sodalite cavity (Se(1)-Na(1) = 2.53(5) Å) and 1 at Se(2) opposite 4-rings (Se(2)-O(1) = 2.76(10) Å) and 1 at Se(3) opposite 6-rings in the large cavity (Se(3)-Na(1) = 2.48(5) Å). Two molecular of Se2 (Se(1)-Se(1) = 2.37(7) or 2.90(8) Å and Se(2)-Se(3) = 2.91(5) ) Å) are found in all sodalite cavity and large cavity. Other clusters such as Se4 and Se8 could be existed in large cavity. The inter-selenium distances turned out to be longer that of gases Se2 molecule.

Formation Environment of Quaternary deposits and Palynology of Jangheung-ri Archaeological Site (Jiphyeon County, Jinju City), Korea (진주 집현 장흥리 유적 제4기 퇴적층 형성 및 식생환경 연구)

  • 김주용;박영철;양동윤;봉필윤;서영남;이윤수;김진관
    • The Korean Journal of Quaternary Research
    • /
    • v.16 no.2
    • /
    • pp.9-21
    • /
    • 2002
  • In Korea, many open-air upper palaeolithic sites are located at the river valley, particularly exposed in gently rotting terrain along the river course. They are situated at an altitude less trail 30 m above present river bottom, and covered with the blankets of slope deposits of several meters in thickness. The purpose of this research is to eluridate depositional and vegetational environment of the alluvial upper palaeolithic Jangheung-ri sites on the basis of analytical properties of grain size population, chronology, palynology, soil chemistry and clay mineralogy and magnetic susceptibility of the Jangheung-ri Quaternary formations. The lithostratograpy of Jangheung-ri sit is subdivided into 3 layers based on the depositional sequence and radiocarbon ages. From bottom to top, they are composed of slope deposits with lower paleosol layers, young fluvial sand and gravel with backswamp organic muds, and upper paleosol layers. The upper paleosol was formed under rather dry climatic condition between each flooding period. Dessication cracks were prevalent in the soil solum which was filled with secondarily minuted fragments due to pedogenetic process. The soil structure shows typical braided-typed cracks in the root part of cracking texture, and more diversified pattern of crackings downward. The young fluvial sand gravel were formed by rather perennial streams after LGM. The main part of organic muds was particularly formed after 15Ka. Local backswamp were flourished with organic muds and graded suspension materials in the flooding muds were intermittently accumulated in the organic muds until ca. 11Ka. This episode was associated with migration of Nam River toward present course. Organic muds were formed in backswamp or local pond. Abies/Picea-Betula with Ranunculaceae, Compositae, Cyperaceae were prevalent. This period is characterized with B$\Phi$lling, Older Dryas, Allerod, and Younger Dryas (MIS-1). Stone artefacts were found in the lower paleosol layers formed as old as 18Ka-22Ka. Based on the artefacts and landscape settings of the Jangheung-ri site, it is presumed that settlement grounds of old people were buried by frequent floodings of old Nam River, the river-beds of which were heavily fluctuated laterally and river-bed erosions were activated from south to north in Jangheung-ri site until the terminal of LGM9ca 17Ka).

  • PDF

Synthesis of Garnet in the Ca-Ce-Gd-Zr-Fe-O System (Ca-Gd-Ce-Zr-Fe-O계에서의 석류석 합성 연구)

  • Chae Soo-Chun;Jang Young-Nam;Bae In-Kook;Yudintsev S.V.
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.187-196
    • /
    • 2005
  • Structural sites which cations can occupy in garnet structure are centers of the tetrahedron, octahedron, and distorted cube sharing edges with the tetrahedron and octahedron. Among them, the size of cation occuping at tetrahedral site (the center of tetrahedron) is closely related with the size of a unit cell of garnet. Accordingly, garnet containing iron with relative large ionic radii in tetrahedral site can be considered as a promising matrix for the immobilization of the elements with large ionic radii, such as actinides in radioactive wastes. We synthesized several garnets with the batch composition of $Ca_{1.5}GdCe_{0.5}ZrFeFe_3O_{12}$, and studied their properties and phase relations under various conditions. Mixed samples were fabricated in a pellet form under a pressure of $200{\~}400{\cal}kg/{\cal}cm^2$ and were sintered in the temperature range of $1100\~1400^{\circ}C$ in air and under oxygen atmospheres. Phase identification and chemical analysis of synthesized samples were conducted by XRD and SEM/EDS. In results, garnet was obtained as the main phase at $1300^{\circ}C$, an optimum condition in this system, even though some minor phases like perovskite and unknown phase were included. The compositions of garnet and perovskite synthesized from the batch composition of $Ca_{1.5}GdCe_{0.5}ZrFeFe_3O_{12}$ were ranged $[Ca_{l.2-1.8}Gd_{0.9-1.4}Ce_{0.3-0.5}]^{VIII}[Zr_{0.8-1.3}Fe_{0.7-1.2}]^{VI}[Fe_{2.9-3.1}]^{IV}O_{12}$ and $Ca_{0.1-0.5}Gd_{0.0-0.8}Ce_{0.1-0.5}\;Zr_{0.0-0.2}Fe_{0.9-1.1}O_3$, respectively. Ca content was exceeded and Ce content was depleted in the 8-coordinated site, comparing to the initial batch composition. This phenomena was closely related to the content of Zr and Fe in the 6-coordinated site.

Origin of Manganese Carbonates in the Janggun Mine, South Korea (장군광산산(將軍鑛山産) 망간광물의 성인(成因)에 관(關)한 연구(硏究))

  • Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.19 no.2
    • /
    • pp.109-122
    • /
    • 1986
  • Mn-Pb-Zn-Ag deposits of the Janggun mine are hosted in the Cambro-Ordovician Janggun limestone mostly along the contacts of the Jurassic Chunyang granite. The deposits are represented by several ore pipes and steeply dipping lenticular bodies consisting of lower Pb-Zn-Ag sulfide ores and upper manganese carbonate and oxide ores. The former consists mainly of arsenic, antimony, silver, manganese, and tin-bearing sulfides, whereas the latter are characterized by hypogene rhodochrosite, and superficial manganese oxides including todorokite, nsutite, pyrolusite, cryptomelane, birnesite and janggunite. Origin of the upper manganese ore deposits has been a controversial subject among geologists for this mine: hydrothermal metasomatic vs. syngenetic sedimentary origin. Syngenetic advocators have proposed a new sedimentary rock, rhodochrostone, which is composed mainly of rhodochrosite in mineralogy. In the present study, carbon, oxygen and sulfur isotopic compositions were analayzed obtaining results as follows: Rhodochrosite minerals, (Mn, Ca, Mg, Fe) $CO_3$, from hydrothermal veins, massive sulfide ores and replacement ores in dolomitic limestone range in isotopic value from -4.2 to -6.3‰ in ${\delta}^{13}C$(PDB) and +7.6 to +12.9‰ in ${\delta}^{18}O$(SMOW) with a mean value of -5.3‰ in ${\delta}^{13}C$ and +10.7‰ in ${\delta}^{18}O$. The rhodochrosite bearing limestone and dolomitic limestone show average isotopic values of -1.5‰ in ${\delta}^{13}C$ and +17.5‰ in ${\delta}^{18}O$, which differ from those of the rhodochrosite mentioned above. This implies that the carbon and oxygen in ore fluids and host limestone were not derived from an identical source. ${\delta}^{34}S$ values of sulfide minerals exhibit a narrow range, +2.0 to +5.0‰ and isotopic temperature appeared to be about $288{\sim}343^{\circ}C$. Calculated initial isotopic values of rhodochrosite minerals, ${\delta}^{18}O_{H_2O}=+6.6$ to +10.6‰ and ${\delta}^{13}C_{CO_2}=-4.0$ to -5.1 ‰, strongly suggest that carbonate waters should be deep seated in origin. Isotopic data of manganese oxide ores derived from hypogene rhodochrosites suggest that the oxygen of the limestone host rock rather than those of meteoric waters contribute to form manganese oxide ores above the water table.

  • PDF

Geochemical Characteristics of Stream Sediments in the Konyang Area (곤양지역 하상퇴적물에 대한 지구화학적 특성)

  • Park Yaung-Seog;Park Dae-Woo
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.329-342
    • /
    • 2006
  • The purpose of this study is to determine the geochemical characteristics for the stream sediments in the Konyang area. So we can estimate the environment contamination and understand geochemical disaster. We collect the stream sediments samples by wet sieving along the primary channels and slowly dry the collected samples in the laboratory and grind to pass a 200mesh using an alumina mortar and pestle for chemical analysis. Mineralogy, major, trace and rare earth elements are determined by XRD, XRE, ICP-AES and NAA analysis methods. For geochemical characteristics on the geological groups of stream sediments, the studied area was grouped into quartz porphyry area, sedimentary rock area, anorthosite area and gneiss area. Contents of major elements for the stream sediments in the Konyang area were $SiO_2\;41.86{\sim}76.74\;wt.%,\;Al_{2}O_{3}\;9.92{\sim}30.00\;wt.%,\;Fe_{2}O_{3}\;2.74{\sim}12.68\;wt.%,\;CaO\;0.22{\sim}3.31\;wt.%,\;MgO\;0.34{\sim}3.97\;wt.%,\;K_{2}O\;0.75{\sim}0.93\;wt.%,\;Na_{2}O\;0.25{\sim}1.92\;wt.%,\;TiO_{2}\;0.40{\sim}3.00\;wt.%,\;MnO\;0.03{\sim}0.21\;wt.%,\;P_{2}O_{5}\;0.05{\sim}0.38\;wt.%$. The contents of trace and rare earth elements for the stream sediments were $Cu\;7{\sim}102\;ppm,\;Pb\;15{\sim}47\;ppm,\;Sr\;48{\sim}513\;ppm,\;V\;29{\sim}129\;ppm,\;Zr\;31{\sim}217\;ppm,\;Li\;14{\sim}94\;ppm,\;Co\;5.6{\sim}32.1\;ppm,\;Cr\;23{\sim}259\;ppm,\;Cs\;1.7{\sim}8.7\;ppm,\;Hf\;2.1{\sim}109.0\;ppm,\;Rb\;34{\sim}247\;ppm,\;Sc\;4.5{\sim}21.9\;ppm,\;Zn\;24{\sim}609\;ppm,\;Sb\;0.8{\sim}2.6\;ppm,\;Th\;3{\sim}213\;ppm,\;Ce\;22{\sim}1000\;ppm,\;Eu\;0.7{\sim}5.3\;ppm,\;Yb\;0.6{\sim}6.4\;ppm$. Generally, the contents of $Al_{2}O_{3}\;and\;SiO_2$ had a good relationships with each other in rocks but it had a bad relationships in stream sediments for this study area. The contents of $Fe_{2}O_3$, CaO, MnO and $P_{2}O_{5}$ had a good relationships with major and minor elements in stream sediments of this study area. The contents of Co and V in the stream sediments had a good relationships with other toxic elements.

Mineralogical Evolution of Non-Andic Soils, Jeju Island (제주도 Non-Andic 토양의 광물학적 진화)

  • 하대호;유장한;문희수;이규호;송윤구
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.491-508
    • /
    • 2002
  • While about 80% of Jeju soils are classified as Andisols, the soils derived from volcanic ash in Dangsanbong are not Andisols. There is a significant difference of precipitation in localities of Jeju island. The study area is characterized by the lowest amount of annual rainfall in Jeju Island, and by the layered silicates as dominant solid phase in clay fraction. The purpose of this study was to characterize the mineralogy of the non-Andie soils in detail, especially hydroxy-interlayered silicates. Two major soil horizons are recognized in the soil profile developed in the Dangsanbong area, which can be designated as A and C. The soil pH($H_{2}0$), ranges from 6.6 to 7.3 increasing with depth, is higher than that of typical Andisols(pH<6.0). While the pH(NaF), ranges from 9.49 to 9.81, indicates that significant amount of amorphous phases might be present as exchanging complexes. It is estimated to about 1.542.88 wt% by using chemical selective dissolution. The organic content of surface horizon is about 2 wt%. This soil are composed of quartz, feldspar and olivine as major constituents with minor of silicate clays. Quartz is frequently observed in A and distinctly decreases in its amount with depth, while olivine is dominant phase in C and rarely observed in A. In the <0.2$\mu\textrm{m}$ size fraction, smectite and kaolinite/smectite interstratification are dominant with minor of illite. The amounts of smectite decrease with depth, while the amounts of kaolinite/smecite interstratification increase with depth, which indicates the trend of mineral transformation with increasing the degree of weathering. The proportion of kaolinite in kaolinite/smectite interstratification is about 85%, and is not changed significantly through the profile. In the 2-0.2$\mu\textrm{m}$size fraction, vermiculite, smectite, illite and kaolinite are major components with minor of chlorite. Most of chlorite are interstratified with smectite. Chlorite which is not interstratified with smectite occurs only in surface horizon. The proportion of the chlorite in the chlorite/smectite interstratification is 59-70(%) and increases with depth. Hydroxy-interlayered vermiculite(HIV) with hydroxy-Fe/AI in their interlayers occurs in both A and C horizon. The amounts of hydroxy-Fe/AI decrease with depth. Hydroxy-interlayered smectite(HIS) of which interlayers might be composed of hydroxy-Mg/Al occurs only in C horizon. As the results of mineralogical investigation for the soil profile in the study area, clay minerals might be changed and evolved through the following weathering sequences: 1) Smectite Kaolinite, HIS, Vermiculite, 2) Vermiculite HIV Chlorite.

Rock-magnetic Properties of Chimneys from TA25 Seamount in the Tofua Arc, Southwest Pacific (통가 EEZ내 TA25 해저산에서 채취한 열수광체의 암석자기학적 특성 연구)

  • Kim, Wonnyon;Pak, Sang Joon;Lee, Kyeong Yong;Moon, Jai-Woon;Kim, Hyun Sub;Choi, Sun Ki
    • Economic and Environmental Geology
    • /
    • v.46 no.3
    • /
    • pp.207-214
    • /
    • 2013
  • To identify rock-magnetic properties of volcanogenic hydrothermal sulfide deposits, chimneys were obtained from the Tofua Arc in Southwest Pacific, using a remotely operated vehicle (ROV) and Grab with AV cameras (GTVs). Three different types of chimneys used in this study are a high-temperature chimney with venting fluid-temperature of about $200^{\circ}C$ (ROV01), a low-temperature chimney of about $80^{\circ}C$ (GTV01), and an inactive chimney (ROV02). Magnetic properties of ROV01 are dominated by pyrrhotite, except for the outermost that experienced severe oxidation. Concentration and grain-size of ROV01 pyrrhotite are relatively low and fine. For GTV01, both magnetic concentration and grain-size increase from interior to margin. Pyrrhotite, dominant in the core, becomes mixed with hematite in the rim of the chimney due to secondary oxidation. High concentration and large grain-size of magnetic minerals characterize the ROV02. Dominant magnetic phases are pyrrhotite, hematite and goethite. In particular, the outermost rim shows a presence of magnetite produced by magnetotactic bacterial activity. Such distinctive contrast in magnetic concentration, grain-size and mineralogy among three different types of chimney enables the rock-magnetic study to characterize an evolution of hydrothermal deposits.

Heavy Metal Contamination of Soils and Stream Sediments at the Sanggok Mine Drainage, Upper Chungju Lake, Korea (충주호 상류, 상곡광산 수계에 분포하는 토양과 하상퇴적물의 중금속 오염)

  • 이현구;이찬희
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.1
    • /
    • pp.10-20
    • /
    • 1998
  • Heavy metal contamination in subsurface soils and stream sediments at the Suggok mine area were investigated on the basis of major, trace and rare earth elements geochemistry and mineralogy. The Sanggok mine area is mainly composed of Cambro-Ordovician carbonate rocks. The mine had been mined for Pb-Zn-Fe and Au- Ag, but already closed in past. For major elements, especially Fe (mean value=18.58 wt.%) and Mn (mean value=4. 18 wt.%) are enriched in soils, and the average enrichment indices of soils and sediments are 6.84 and 1.54, respectively. The average enrichment index of rare earth elements are 0.92 of mining drainage sediments and 0.52 of subsurface soils on the tailing dam. Concentrations of minor and/or environmental toxic elements in those samples range from 29 to 3400 for As,1 to 11 for Cd, 35 to 292 for Cu, 50 to 1827 for Pb, 1 to 22 for Sb and 112 to 2644 for Zn. Extremely high concentrations (mean values) are found in subsurface soils on the tailing dam (As=2278, Cd=7, Cu=206, Pb=1372, Sb=14 and Zn=2231 ppm, respectively). Average enrichment index normalized by composition of non-mining drainage sediments is 2.42 in mining drainage sediments and 25.47 in subsurface soils on the tailing dam. Based on EPA value, enrichment index of toxic elements is 0.53 in non-mining drainage sediments, 1.84 in mining drainage sediments and 23.71 in subsurface soils on the tailing dam. As a results from X-ray powder diffraction method, mineral composition of soils and sediments near the mine area varied in part, and are calcite, dolomite, magnesite, quartz, mica, chlorite and clay minerals. With the separation of heavy minerals, soils and sediments of highly concentrated toxic elements included some pyrite, arsenopyrite, sphalerite, galena, goethite and hydroxide minerals on the polished sections.

  • PDF