• Title/Summary/Keyword: Mineralogical analysis

Search Result 399, Processing Time 0.028 seconds

Material Scientific Properties and Effects on Atmospheric Environment of Copper Rust Pigments (동록안료의 재료과학적 특성 및 대기환경 영향 평가)

  • Park, Ju Hyun;Kim, Myoung Nam;Park, Se Rin;Yu, Ji A;Kim, Su Kyoung;Lee, Sun Myung
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.361-376
    • /
    • 2020
  • Atacamite and Verdigris were studied material scientific properties and durability that are used for traditional green pigment in traditional art painting work and Dancheong. As a result of ingrediant analysis, K-AA and K-VA identified Atacamite and Hoganite (or Verdigris) respectively. In order to find a factor of depressing the stability of pigment, we examined UV radiant exposure test, CO2/NO2 gas corrosion test and salt spray test. Salt spray test damaged both samples which were formed salt particle on the surface of the samples and it makes color disability. Furthermore, the results of gas corrosion test that both pigments change color enough to be perceived by the naked eyes showed that an air pollutant NO2 gas is also considered to be a major damage factor. In the case of K-VA, Hoganite that is main component of sample changes Tenorite with turn black after accelerated UV radiant exposure test. The consequences of the atmospheric environment effect test of the two pigments, K-VA showed relatetively weaker than K-AA.

Analysis of the Latest Trends in Mineral Resource Exploration and Mining in China and its Implications (중국의 광물자원 탐사개발 최신동향 분석 및 시사점)

  • Kim, Seong-Yong;Heo, Chul-Ho
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.75-81
    • /
    • 2022
  • Given that China's resource research, exploration and development and resource economy policies are closely related to Korea's industrial competitiveness in the field of global mineral energy resources, it is important to establish the domestic and overseas resource development strategies. In 2020, China will revise and set standards for mineral resources to ensure efficiency in exploration and development and storage management. China's Ministry of Natural Resources has established the National Mineral Resources Plan (2021-2025), aiming to achieve national goals and strategies, and local governments at all levels are also establishing and implementing regional mineral resources plans. As a result, the supervision and management of geological mineral exploration activities have been strengthened, and the safety of industrial production management in the field of geological mineral exploration and development has been strengthened. China has developed guidelines for high-quality geological exploration, surveying and mapping, improved the level of geological mineral exploration and strengthened the mining supervision and management system. According to China's standardization of mineral resources such as solid mineral resources and petroleum gas mineral resources, a new standard system for resource management will be established in China to improve scientific understanding, rational management and utilization.

Research Possibility of Using Quartz Crystal Microbalance for Polystyrene Nanoplastics Adsorption to SiO2 Surface (수정진동자미세저울을 활용한 폴리스티렌 나노플라스틱의 SiO2 표면흡착 연구 가능성)

  • Myeong, Hyeonah;Kim, Juhyeok;Lee, Jin-Yong;Kwon, Kideok D.
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.265-275
    • /
    • 2021
  • Findings of microplastics and nanoplastics from diverse natural environments have increased demand for research of the fate and transport of the potentially toxic plastic particles in soils and groundwater. Weathering of microplastics would generate a significant amount of nanoplastics, but nanoplastics research is scarce because of technical difficulties in detecting nanoplastics in environments and analyzing nanoplastics adsorption to mineral surfaces. In the current study, we tested a possibility using quartz crystal microbalance (QCM) for application to nanoplastics adsorption analysis on mineral surfaces. In silica (SiO2)-packed column experiments, a measurable adsorption capacity for polystyrene nanoparticles often requires injection of unrealistically high ionic strengths or concentrated nanoplastic particles. The current test shows that QCM can measure polystyrene nanoplastics adsorbed onto SiO2 surface under the low ionic strengths and nanoplastics concentrations, where typical column experiments cannot. QCM is a promising tool for understanding the interaction between nanoplastics and mineral surfaces and thus transport of nanoplastics in soils and groundwater.

Optimal Conditions for Pretreated Sample for Sr Isotope Analysis by MC-ICP-MS: A Comparison Between Eichrom (SR-R50-S)'s and Bio-Rad(AG®50W-X8)'s Resins (다검출기 유도결합 플라즈마 질량분석기에 의한 Sr 동위원소 분석을 위해 전처리된 시료의 최적 조건: Eichrom사 Sr 수지(SR-R50-S)와 Bio-Rad사 수지(AG®50W-X8) 비교)

  • Myoung Jung, Kim;Seung-Gu, Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.507-520
    • /
    • 2022
  • The Sr isotope ratio, which is used as basic data for rock formation time, crustal and mantle evolution studies, is determined by mass spectrometer such as thermal ionization mass spectrometry (TIMS) or multi-detector inductively coupled plasma mass spectrometry (MC-ICP-MS). In this technical report, we compared how incomplete chemical separation of elements affects the determination of Sr isotope ratios. For the experiment, commercial resin, NBS987(NIST SRM987) Sr isotope standard, and rock standard samples from the Geological Survey of Japan (GSJ) such as JG1a, JB3 and JA1 were used. As a result of the comparative experiment, it was clearly observed that the measured values of 87Sr/86Sr change when Rb remains due to incomplete separation of the NBS987 Sr isotope standard sample as well as the rock standard samples of GSJ. This indicates that complete separation is an important factor since the calculated value deviates from the true value even though correction for isotope interference by isobar is performed when measuring the isotope ratio with MC-ICP-MS. This also suggests that, when reporting the measurement result of Sr isotope ratio using MC-ICP-MS, the measurement strength of 85Rb should be reported together with the measurement strength of all isotopes of Sr so that isotope interference by isobar can be judged.

Geological Structures and Extension Mode of the Southwestern Part(Bomun Area) of the Miocene Pohang Basin, SE Korea (한반도 동남부 마이오세 포항분지 남서부(보문지역)의 지질구조와 확장형식)

  • Song, Cheol Woo;Kim, Min-Cheol;Lim, Hyewon;Son, Moon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.235-258
    • /
    • 2022
  • We interpreted the evolutionary history of the southwestern part of the Pohang Basin, the largest Miocene basin in the southeastern part of the Korean Peninsula, based on the detailed geological mapping and analysis of the geological structures. The southwestern part of the Pohang Basin can be divided into the Bomun Domain in the west and Ocheon Domain in the east by an NNE-trending horst-in-graben. These two domains have different geometries and deformation histories. The Bomun Domain was rarely deformed after the incipient extension of the basin, whereas the Ocheon Domain is an area where continued and overlapped deformations occurred after the basin fill deposition. Therefore, the Bomun Domain provides critical information on the initial extension mode of the Pohang Basin. The subsidence of the Bomun Domain was led by the zigzag-shaped western border fault that consists of NNE-striking normal and NNW-striking dextral strike-slip fault segments. This border fault is connected to the Yeonil Tectonic Line (YTL), a regional dextral principal displacement zone and the westernmost limit of Miocene crustal deformation in SE Korea. Therefore, it is interpreted that the Pohang Basin was initially extended in WNW-ESE direction as a transtensional fault-termination basin resulting from the movement of NNE-striking normal and/or oblique-slip faults formed as right-stepover in the northern termination of the YTL activated since approximately 17-16.5 Ma. As a result, an NNE-trending asymmetric graben or half-graben exhibiting an westward deepening of basin depth was formed in the Bomun Domain. Afterward, crustal extension and deformation were migrated to the east, including the Ocheon Domain.

Paleoproterozoic Hot Orogenesis Recorded in the Yeongnam Massif, Korea (영남육괴에 기록된 고원생대 고온조산운동)

  • Lee, Yuyoung;Cho, Moonsup
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.199-214
    • /
    • 2022
  • The Yeongnam Massif is one of representative basement provinces in the Korean Peninsula, which has experienced high-temperature, low-pressure (HTLP) regional metamorphism and partial melting. Here we reviewed recent developments in Paleoproterozoic (1.87-1.84 Ga) hot orogenesis of the Yeongnam Massif, typified by the granulite-facies metamorphism and partial melting recorded in the HTLP rocks. In particular, spatiotemporal linkage between the metamorphic and magmatic activities, including the Sancheong-Hadong anorthositic magma as a heat source, provides a key to understand the widespread HTLP metamorphism and partial melting in the Yeongnam Massif. Crustal anatexis, resulting from the fluid-present melting and muscovite/biotite dehydration melting, has yielded various types of leucosomes and leucogranites. Zircon and monazite petrochronology, using in-situ U(-Th)-Pb data from the secondary ion mass spectrometry, indicates that the HTLP metamorphism and anatexis lasted over a period of ~15 Ma at ca. 1870-1854 Ma. In addition, a fluid influx event at ca. 1840 Ma was locally recognized by the occurrence of incipient charnockite. Taken together, the Yeongnam Massif preserves a prolonged evolutionary record of the HTLP metamorphism, partial melting, and fluid influx diagnostic for a hot orogen. Such an orogen is linked to the Paleoproterozoic orogeny widespread in the North China Craton, and most likely represents the final phase of crustal evolution in the Columbia/Nuna supercontinent.

Analysis of the Effect of Forest Fires on the Mineralogical Characteristics of Soil (산불 영향에 따른 토층의 광물학적 특성 변화에 관한 연구)

  • Man-Il Kim;Chang-Oh Choo
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.69-83
    • /
    • 2023
  • Forest fires increase the risk of subsequent soil erosion and mass movement in burned areas, even under rainfall conditions below landslide alert thresholds, by destroying plants and vegetation and causing changes to soil properties. These effects of forest fires can alter runoff in burned areas by altering soil composition, component minerals, soil water repellency, soil mass stability, and soil fabric. Heat from forest fires not only burns shallow organic matter and plants but also spreads below the surface, affecting soil constituents including minerals. This study analyzed X-ray diffraction and physical properties of topsoil and subsoil obtained from both burned and non-burned areas to identify the composition and distribution of clay minerals in the soil. Small amounts of mullite, analcite, and hematite were identified in burned soils. Vermiculite and mixed-layer illite/vermiculite (I/V) were found in topsoil samples from burned areas but not in those from non-burned areas. These findings show changes in soil mineral composition caused by forest fires. Expansive clay minerals increase the volume of soil during rainfall, degrading the structural stability of slopes. Clay minerals generated in soil in burned areas are therefore likely to affect the long-term stability of slopes in mountainous areas.

Archaeometric Characterization of Raw Materials and Tempers of Bricks Used in the Brick Tombs during Ungjin Period of Baekje (백제 웅진기 벽돌무덤에 사용된 벽돌의 재료와 첨가물 특성 분석)

  • Sungyoon Jang;Hong Ju Jin
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.571-582
    • /
    • 2022
  • In this study, the raw material and tempers of bricks used in three brick tombs built in Gongju, during the Ungjin period of Baekje were investigated. The royal tomb of King Muryeong, the 6th tomb in the royal tombs, and Kyochonri brick tomb remained in Gongju and the bricks of each site had different shape and physical properties despite their similarity in raw materials. As the results of the mineralogical and microstructural analysis, the bricks of the royal tombs were made of refined raw materials, and were infrequently added crushed bricks(grogs) as a tempering material. On the other hand, thick and elongated pores of bricks from the Kyochonri brick tomb were frequently found, and the remains of plant carbonization are observed in their microstructures. Since the pores are mainly distributed in a thickness of 0.3 to 1 mm, it is estimated that bricks were produced by adding a certain size of the plant to refined soil, and grogs also were added as a tempering material. In particular, it was found that adding plants and grogs in raw materials of bricks caused thick pores or cracks in the internal structure. Since the bricks of the Kyochonri brick tomb have internal cracks and low firing temperature, the ultrasonic velocity of the bricks was lower than that of the royal tomb bricks. It means that the mechanical strength of these bricks were relatively low. Accordingly, it is estimated that the tempering materials, firing temperature, and internal structures of bricks can affect durability of the brick, and it can be thought as a difference in the manufacturing technology of brick making.

Mineralogical and Geochemical Characteristics of the Precipitates in Acid Mine Drainage of the Heungjin-Taemaek Coal Mine (흥진태맥 석탄광 산성광산배수 침전물의 광물학적 및 지구화학적 특성)

  • Shin, Ji-Hwan;Park, Ji-Yeon;Kim, Yeongkyoo
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.299-308
    • /
    • 2021
  • Fe(II) released from mining activities is precipitated as various Fe(III)-oxyhydroxides when exposed to an oxidizing environment including mine drainage. Ferrihydrite, one of the representative precipitated Fe(III) minerals, is easy to adsorb heavy metals and other pollutants due to the large specific surface area caused by very low crystallinity. Ferrihydrite is transformed to thermodynamically more stable goethite in the natural environment. Hence, information on the transformation of ferrihydrite to goethite and the related mobility of heavy metals in the acid mine drainage is important to predict the behaviors of those elements during ferrihydrite to goethite transition. The behaviors of heavy metals during the transformation of ferrihydrite to goethite were investigated for core samples collected from an AMD treatment system in the Heungjin-Taemaek coal mine by using X-ray diffraction (XRD), chemical analysis, and statistical analysis. XRD results showed that ferrihydrite gradually transformed to goethite from the top to the bottom of the core samples. Chemical analysis showed that the relative concentration of As was significantly high in the core samples compared with that in the drainage, indicating that As was likely to be adsorbed strongly on or coprecipitated with iron oxyhydroxide. Correlation analysis also indicated that As can be easily removed from mine drainage during iron mineral precipitation due to its high affinity to Fe. The concentration ratio of As, Cd, Co, Ni, and Zn to Fe generally decreased with depth in the core samples, suggesting that mineral transformation can increase those concentrations in the drainage. In contrast, the concentration ratio of Cr to Fe increased with depth, which can be explained by the chemical bond of iron oxide and chromate, and surface charge of ferrihydrite and goethite.

Mineralogical Analysis of Calcium Silicate Cement according to the Mixing Rate of Waste Concrete Powder (폐콘크리트 미분말 치환율에 따른 이산화탄소 반응경화 시멘트의 광물상 분석)

  • Lee, Hyang-Sun;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.181-191
    • /
    • 2024
  • In the realm of cement manufacturing, concerted efforts are underway to mitigate the emission of greenhouse gases. A significant portion, approximately 60%, of these emissions during the cement clinker sintering process is attributed to the decarbonation of limestone, which serves as a fundamental ingredient in cement production. Prompted by these environmental concerns, there is an active pursuit of alternative technologies and admixtures for cement that can substitute for limestone. Concurrently, initiatives are being explored to harness technology within the cement industry for the capture of carbon dioxide from industrial emissions, facilitating its conversion into carbonate minerals via chemical processes. Parallel to these technological advances, economic growth has precipitated a surge in construction activities, culminating in a steady escalation of construction waste, notably waste concrete. This study is anchored in the innovative production of calcium silicate cement clinkers, utilizing finely powdered waste concrete, followed by a thorough analysis of their mineral phases. Through X-ray diffraction(XRD) analysis, it was observed that increasing the substitution level of waste concrete powder and the molar ratio of SiO2 to (CaO+SiO2) leads to a decrease in Belite and γ-Belite, whereas minerals associated with carbonation, such as wollastonite and rankinite, exhibited an upsurge. Furthermore, the formation of gehlenite in cement clinkers, especially at higher substitution levels of waste concrete powder and the aforementioned molar ratio, is attributed to a synthetic reaction with Al2O3 present in the waste concrete powder. Analysis of free-CaO content revealed a decrement with increasing substitution rate of waste concrete powder and the molar ratio of SiO2/(CaO+SiO2). The outcomes of this study substantiate the viability of fabricating calcium silicate cement clinkers employing waste concrete powder.