• Title/Summary/Keyword: Mineralization related gene expression

Search Result 19, Processing Time 0.033 seconds

Gene expression pattern during osteogenic differentiation of human periodontal ligament cells in vitro

  • Choi, Mi-Hye;Noh, Woo-Chang;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.4
    • /
    • pp.167-175
    • /
    • 2011
  • Purpose: Periodontal ligament (PDL) cell differentiation into osteoblasts is important in bone formation. Bone formation is a complex biological process and involves several tightly regulated gene expression patterns of bone-related proteins. The expression patterns of bone related proteins are regulated in a temporal manner both in vivo and in vitro. The aim of this study was to observe the gene expression profile in PDL cell proliferation, differentiation, and mineralization in vitro. Methods: PDL cells were grown until confluence, which were then designated as day 0, and nodule formation was induced by the addition of 50 ${\mu}g$/mL ascorbic acid, 10 mM ${\beta}$-glycerophosphate, and 100 nM dexamethasone to the medium. The dishes were stained with Alizarin Red S on days 1, 7, 14, and 21. Real-time polymerase chain reaction was performed for the detection of various genes on days 0, 1, 7, 14, and 21. Results: On day 0 with a confluent monolayer, in the active proliferative stage, c-myc gene expression was observed at its maximal level. On day 7 with a multilayer, alkaline phosphatase, bone morphogenetic protein (BMP)-2, and BMP-4 gene expression had increased and this was followed by maximal expression of osteocalcin on day 14 with the initiation of nodule mineralization. In relationship to apoptosis, c-fos gene expression peaked on day 21 and was characterized by the post-mineralization stage. Here, various genes were regulated in a temporal manner during PDL fibroblast proliferation, extracellular matrix maturation, and mineralization. The gene expression pattern was similar. Conclusions: We can speculate that the gene expression pattern occurs during PDL cell proliferation, differentiation, and mineralization. On the basis of these results, it might be possible to understand the various factors that influence PDL cell proliferation, extracellular matrix maturation, and mineralization with regard to gene expression patterns.

Cellular zinc deficiency inhibits the mineralized nodule formation and downregulates bone-specific gene expression in osteoblastic MC3T3-E1 cells

  • Cho, Young-Eun;Kwun, In-Sook
    • Journal of Nutrition and Health
    • /
    • v.51 no.5
    • /
    • pp.379-385
    • /
    • 2018
  • Purpose: Zinc (Zn) is an essential trace element for bone mineralization and osteoblast function. We examined the effects of Zn deficiency on osteoblast differentiation and mineralization in MC3T3-E1 cells. Methods: Osteoblastic MC3T3-E1 cells were cultured at concentration of 1 to $15{\mu}M$ $ZnCl_2$ (Zn- or Zn+) for 5, 15 and 25 days up to the calcification period. Extracellular matrix mineralization was detected by staining Ca and P deposits using Alizarin Red and von Kossa stain respectively, and alkaline phosphatase (ALP) activity was detected by ALP staining and colorimetric method. Results: Extracellular matrix mineralization was decreased in Zn deficiency over 5, 15, and 25 days. Similarly, staining of ALP activity as the sign of an osteoblast differentiation, was also decreased by Zn deficiency over the same period. Interestingly, the gene expression of bone-related markers (ALP, PTHR; parathyroid hormone receptor, OPN; osteopontin, OC; osteocalcin and COLI; collagen type I), and bone-specific transcription factor Runx2 were downregulated by Zn deficiency for 5 or 15 days, however, this was restored at 25 days. Conclusion: Our data suggests that Zn deficiency inhibits osteoblast differentiation by retarding bone marker gene expression and also inhibits bone mineralization by decreasing Ca/P deposition as well as ALP activity.

Study on Biocompatibility and Mineralization Potential of Capseal

  • Bae, Kwang Shik;Chang, Seok Woo;Kum, Kee Yeon;Lee, Woo Cheol
    • Journal of Korean Dental Science
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • Purpose: Capseal I and Capseal II are calcium silicate and calcium phosphate based experimental root canal sealers. This study sought to evaluate the biocompatibility and mineralization potential of Capseal I and Capseal II. Materials and Methods: The biocompatibility and mineralization related gene expression (alkaline phosphatase [ALP], bone sialoprotein [BSP], and osteocalcin) of Capseal I and Capseal II were compared using methylthiazol tetrazolium assay and reverse transcription-polymerization chain reaction analysis, respectively. The results were analyzed by Kruskal-Wallis test. A P-value of <0.05 was considered significant. Result: Both Capseal I and Capseal II were favorable in terms of biocompatibility, influencing the messenger RNA expression of ALP and BSP. Conclusion: Within the limitation of this study, Capseal is biocompatible, with mineralization promoting potential; thus, it could be a promising root canal sealer.

Chemical Constitution, Morphological Characteristics, and Biological Properties of ProRoot Mineral Trioxide Aggregate and Ortho Mineral Trioxide Aggregate

  • Kum, Kee Yeon;Yoo, Yeon Jee;Chang, Seok Woo
    • Journal of Korean Dental Science
    • /
    • v.6 no.2
    • /
    • pp.41-49
    • /
    • 2013
  • Purpose: This study sought to compare the elemental constitution, morphological characteristics, particle size distribution, biocompatibility, and mineralization potential of Ortho MTA (OMTA) and ProRoot MTA (PMTA). Materials and Methods: OMTA and PMTA were compared using energy-dispersive spectrometry, particle size analysis, and scanning electron microscopy. The biocompatibility and mineralization-related gene expression (osteonectin and osteopontin) of both MTAs were also compared using methylthiazol tetrazolium assay and reverse transcription-polymerization chain reaction analysis, respectively. The results were analyzed by Kruskal-Wallis test with Bonferroni correction. P-value of <0.05 was considered significant. Result: The morphology of OMTA powders was similar to that of PMTA. The constituent elements of both MTAs were calcium, silicon, and aluminum. The mean particle sizes of OMTA and PMTA were 4.60 and 3.34 mm, respectively. Both MTAs had equally favorable in vitro biocompatibility and affected the messenger RNA expression of osteonectin and osteopontin. Conclusion: Within the limitations of this study, OMTA could be a promising biomaterial in clinical endodontics.

Analysis of gene expression during mineralization of cultured human periodontal ligament cells

  • Choi, Hee-Dong;Noh, Woo-Chang;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.1
    • /
    • pp.30-43
    • /
    • 2011
  • Purpose: Under different culture conditions, periodontal ligament (PDL) stem cells are capable of differentiating into cementoblast-like cells, adipocytes, and collagen-forming cells. Several previous studies reported that because of the stem cells in the PDL, the PDL have a regenerative capacity which, when appropriately triggered, participates in restoring connective tissues and mineralized tissues. Therefore, this study analyzed the genes involved in mineralization during differentiation of human PDL (hPDL) cells, and searched for candidate genes possibly associated with the mineralization of hPDL cells. Methods: To analyze the gene expression pattern of hPDL cells during differentiation, the hPDL cells were cultured in two conditions, with or without osteogenic cocktails (${\beta}$-glycerophosphate, ascorbic acid and dexamethasone), and a DNA microarray analysis of the cells cultured on days 7 and 14 was performed. Reverse transcription-polymerase chain reaction was performed to validate the DNA microarray data. Results: The up-regulated genes on day 7 by hPDL cells cultured in osteogenic medium were thought to be associated with calcium/iron/metal ion binding or homeostasis (PDE1A, HFE and PCDH9) and cell viability (PCDH9), and the down-regulated genes were thought to be associated with proliferation (PHGDH and PSAT1). Also, the up-regulated genes on day 14 by hPDL cells cultured in osteogenic medium were thought to be associated with apoptosis, angiogenesis (ANGPTL4 and FOXO1A), and adipogenesis (ANGPTL4 and SEC14L2), and the down-regulated genes were thought to be associated with cell migration (SLC16A4). Conclusions: This study suggests that when appropriately triggered, the stem cells in the hPDL differentiate into osteoblasts/cementoblasts, and the genes related to calcium binding (PDE1A and PCDH9), which were strongly expressed at the stage of matrix maturation, may be associated with differentiation of the hPDL cells into osteoblasts/cementoblasts.

The effects of dexamethasone on the apoptosis and osteogenic differentiation of human periodontal ligament cells

  • Kim, Sung-Mi;Kim, Yong-Gun;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.4
    • /
    • pp.168-176
    • /
    • 2013
  • Purpose: The purpose of the current study was to examine the effect of dexamethasone (Dex) at various concentrations on the apoptosis and mineralization of human periodontal ligament (hPDL) cells. Methods: hPDL cells were obtained from the mid-third of premolars extracted for orthodontic reasons, and a primary culture of hPDL cells was prepared using an explant technique. Groups of cells were divided according to the concentration of Dex (0, 1, 10, 100, and 1,000 nM). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed for evaluation of cellular viability, and alkaline phosphatase activity was examined for osteogenic differentiation of hPDL cells. Alizarin Red S staining was performed for observation of mineralization, and real-time polymerase chain reaction was performed for the evaluation of related genes. Results: Increasing the Dex concentration was found to reduce cellular viability, with an increase in alkaline phosphatase activity and mineralization. Within the range of Dex concentrations tested in this study, 100 nM of Dex was found to promote the most vigorous differentiation and mineralization of hPDL cells. Dex-induced osteogenic differentiation and mineralization was accompanied by an increase in the level of osteogenic and apoptosis-related genes and a reduction in the level of antiapoptotic genes. The decrease in hPDL cellular viability by glucocorticoid may be explained in part by the increased prevalence of cell apoptosis, as demonstrated by BAX expression and decreased expression of the antiapoptotic gene, Bcl-2. Conclusions: An increase in hPDL cell differentiation rather than cellular viability at an early stage is likely to be a key factor in glucocorticoid induced mineralization. In addition, apoptosis might play an important role in Dex-induced tissue regeneration; however, further study is needed for investigation of the precise mechanism.

Zinc Deficiency Decreased Alkaline Phosphatase Expression and Bone Matrix Ca Deposits in Osteoblast-like MC3T3-E1 Cells

  • Cho Young-Eon;Lomeda Ria-Ann R.;Kim Yang-Ha;Ryu Sang-Hoon;Choi Je-Yong;Kim Hyo-Jin;Beattie John H.;Kwun In-Sook
    • Nutritional Sciences
    • /
    • v.8 no.4
    • /
    • pp.242-249
    • /
    • 2005
  • It is well established that zinc plays an important role in bone metabolism and mineralization. The role of zinc in bone formation is well documented in animal models, but not much reported in cell models. In the present study, we evaluated zinc deficiency effects on osteoblastic cell proliferation, alkaline phosphatase activity and expression, and extracellular matrix bone nodule formation and bone-related gene expression in osteoblastic MC3T3-E1 cells. To deplete cellular zinc, chelexed-FBS and interpermeable zinc chelator TPEN were used. MC3T3-E1 cells were cultured in zinc concentration-dependent (0-15 ${\mu}M\;ZnCl_2$) and time-dependent (0-20 days) manners. MC3T3-E1 cell proliferation by MTT assay was increased as medium zinc level increased (p<0.05). Cellular Ca level and alkaline phosphatase activity were increased as medium zinc level increased (p<0.05). Alkaline phosphatase expression, a marker of commitment to the osteoblast lineage, measured by alkaline phosphatase staining was increased as medium zinc level increased. Extracellular calcium deposits measured by von Kossa staining for nodule formation also appeared higher in Zn+(15 ${\mu}M\;ZnCl_2$) than in Zn-(0 ${\mu}M\;ZnCl_2$). Bone formation marker genes, alkaline phosphatase and osteocalcin, were also expressed higher in Zn+ than in Zn-. The current work supports the beneficial effect of zinc on bone mineralization and bone-related gene expression. The results also promote further study as to the molecular mechanism of zinc deficiency for bone formation and thus facilitate to design preventive strategies for zinc-deficient bone diseases.

Identification of Genes Modulated by High Extracellular Calcium in Coculture of Mouse Osteoblasts and Bone Marrow Cells by Oligo Chip Assay

  • Kim, Hyung-Keun;Song, Mi-Na;Jun, Ji-Hae;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.31 no.2
    • /
    • pp.53-65
    • /
    • 2006
  • Calcium concentration in the bone resorption lacunae is high and is in the mM concentration range. Both osteoblast and osteoclast have calcium sensing receptor in the cell surface, suggesting the regulatory role of high extracellular calcium in bone metabolism. In vitro, high extracellular calcium stimulated osteoclastogenesis in coculture of mouse osteoblasts and bone marrow cells. Therefore we examined the genes that were commonly regulated by both high extracellular calcium and $1,25(OH)_2vitaminD_3(VD3)$ by using mouse oligo 11 K gene chip. In the presence of 10 mM $[Ca^{2+}]e$ or 10 nM VD3, mouse calvarial osteoblasts and bone marrow cells were co-cultured for 4 days when tartrate resistant acid phosphatase-positive multinucleated cells start to appear. Of 11,000 genes examined, the genes commonly regulated both by high extracellular calcium and by VD3 were as follows; 1) the expression of genes which were osteoclast differentiation markers or were associated with osteoclastogenesis were up-regulated both by high extracellular calcium and by VD3; trap, mmp9, car2, ctsk, ckb, atp6b2, tm7sf4, rab7, 2) several chemokine and chemokine receptor genes such as sdf1, scya2, scyb5, scya6, scya8, scya9, and ccr1 were up-regulated both by high extracellular calcium and by VD3, 3) the genes such as mmp1b, mmp3 and c3 which possibly stimulate bone resorption by osteoclast, were commonly up-regulated, 4) the gene such as c1q and msr2 which were related with macrophage function, were commonly down-regulated, 5) the genes which possibly stimulate osteoblast differentiation and/or mineralization of extracellular matrix, were commonly down-regulated; slc8a1, admr, plod2, lox, fosb, 6) the genes which possibly suppress osteoblast differentiation and/or mineralization of extracellular matrix, were commonly up-regulated; s100a4, npr3, mme, 7) the genes such as calponin 1 and tgfbi which possibly suppress osteoblast differentiation and/or mineralization of extracellular matrix, were up-regulated by high extracellular calcium but were down-regulated by VD3. These results suggest that in coculture condition, both high extracellular calcium and VD3 commonly induce osteoclastogenesis but suppress osteoblast differentiation/mineralization by regulating the expression of related genes.

Available phosphorus levels modulate gene expression related to intestinal calcium and phosphorus absorption and bone parameters differently in gilts and barrows

  • Julia Christiane Votterl;Jutamat Klinsoda;Simone Koger;Isabel Hennig-Pauka;Doris Verhovsek;Barbara U. Metzler-Zebeli
    • Animal Bioscience
    • /
    • v.36 no.5
    • /
    • pp.740-752
    • /
    • 2023
  • Objective: Dietary phytase increases bioavailability of phytate-bound phosphorus (P) in pig nutrition affecting dietary calcium (Ca) to P ratio, intestinal uptake, and systemic utilization of both minerals, which may contribute to improper bone mineralization. We used phytase to assess long-term effects of two dietary available P (aP) levels using a one-phase feeding system on gene expression related to Ca and P homeostasis along the intestinal tract and in the kidney, short-chain fatty acids in stomach, cecum, and colon, serum, and bone parameters in growing gilts and barrows. Methods: Growing pigs (37.9±6.2 kg) had either free access to a diet without (Con; 75 gilts and 69 barrows) or with phytase (650 phytase units; n = 72/diet) for 56 days. Samples of blood, duodenal, jejunal, ileal, cecal, and colonic mucosa and digesta, kidney, and metacarpal bones were collected from 24 pigs (6 gilts and 6 barrows per diet). Results: Phytase decreased daily feed intake and average daily gain, whereas aP intake increased with phytase versus Con diet (p<0.05). Gilts had higher colonic expression of TRPV5, CDH1, CLDN4, ZO1, and OCLN and renal expression of TRPV5 and SLC34A3 compared to barrows (p<0.05). Phytase increased duodenal expression of TRPV5, TRPV6, CALB1, PMCA1b, CDH1, CLDN4, ZO1, and OCLN compared to Con diet (p<0.05). Furthermore, phytase increased expression of SCL34A2 in cecum and of FGF23 and CLDN4 in colon compared to Con diet (p<0.05). Alongside, phytase decreased gastric propionate, cecal valerate, and colonic caproate versus Con diet (p<0.05). Phytase reduced cortical wall thickness and index of metacarpal bones (p<0.05). Conclusion: Gene expression results suggested an intestinal adaptation to increased dietary aP amount by increasing duodenal trans- and paracellular Ca absorption to balance the systemically available Ca and P levels, whereas no adaption of relevant gene expression in kidney occurred. Greater average daily gain in barrows related to higher feed intake.