• Title/Summary/Keyword: Mineral resources

Search Result 3,783, Processing Time 0.025 seconds

Effect of Short Circuit Current Enhancement in Solar Cell by Quantum Well Structure and Quantitative Analysis of Elements Using Secondary Ion Mass Spectrometry (양자우물구조에 의한 태양전지 단락전류 증가 효과와 이차이온 질량분석법에 의한 원소 정량 분석)

  • Kim, Junghwan
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.499-503
    • /
    • 2019
  • Characteristics of solar cells employing a lattice matched GaInP/GaAs quantum well (QW) structure in a single N-AlGaInP/p-InGaP heterojunction (HJ) were investigated and compared to those of solar cells without QW structure. The epitaxial layers were grown on a p-GaAs substrate with $6^{\circ}$ off the (100) plane toward the <111>A. The heterojunction of solar cell consisted of a 400 nm N-AlGaInP, a 590 nm p-GaInP and 14 periods of a 10 nm GaInP/5 nm GaAs for QW structure and a 800 nm p-GaInP for the HJ structure (control cell). The solar cells were characterized after the anti-reflection coating. The short-circuit current density for $1{\times}1mm^2$ area was $9.61mA/cm^2$ for the solar cell with QW structure while $7.06mA/cm^2$ for HJ control cells. Secondary ion mass spectrometry and external quantum efficiency results suggested that the significant enhancement of $J_{sc}$ and EQE was caused by the suppression of recombination by QW structure.

Geoacoustic Model at the YSDP-105 Long-core Site in the Mid-eastern Yellow Sea (황해 중동부 해역 YSDP-105 심부코어 지점의 지음향 모델)

  • Ryang, Woo-Hun;Jin, Jae-Hwa;Hahn, Jooyoung
    • Journal of the Korean earth science society
    • /
    • v.40 no.1
    • /
    • pp.24-36
    • /
    • 2019
  • In the mid-eastern Yellow Sea, glacio-eustatic sea-level fluctuations and a regional tectonic subsidence have combined to represent an aggradational stacking pattern of sedimentary units during late Pleistocene-Holocene. The accumulated sediments are divisible into two-type units of Type-A and Type-B in high-resolution air-gun seismic profiles and the deep-drilled core of YSDP-105. Type-A unit largely comprises clast-rich coarse-grained sediments of non-marine to paralic origin, whereas Type-B unit consists mostly of tidal fine-grained sediments. Based on a bottom model of the sedimentary units, this study suggested a geoacoustic model of long-coring bottom layers at the YSDP-105 drilling site of the mid-eastern Yellow Sea. The geoacoustic model of 64-m depth below the seafloor with four-layer geoacoustic units was reconstructed in continental shelf strata at 45 m in water depth. For actual modeling, the geoacoustic property values of the models were compensated to in situ depth values below the seafloor using the Hamilton modeling method. We suggest that the geoacoustic model will be used for geoacoustic and underwater acoustic experiments of mid- and low-frequency reflecting on the deep bottom layers in the mid-eastern Yellow Sea.

Properties Evaluation and flowability of Controlled Low Strength Materials Utilizing Industrial By-Products (산업부산물을 활용한 저강도 고유동 채움재의 유동성 및 물성평가)

  • Cho, Yong-Kwang;Kim, Chun-Sik;Nam, Seong-Young;Cho, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.64-69
    • /
    • 2018
  • The purpose of this study is to expand the use of coal ash and coal slag in thermal power plants. In addition, controlled low strength materials was developed to prevent mine settlement. Bottom ash and KR slag are mixed at ratio of 7:3 to expand the use of industrial by-products through carbonate reaction and inhibit the exudation of heavy metals. In order to efficiently fill the abandon mine, workability and physical properties were evaluated according to flow. As a result of elution of harmful substance experiment, it was confirmed that the carbonation reaction inhibited the elution of heavy metals. It was confirmed that the difference in water ratio was the difference in specific surface area of the controlled low strength materials. It was confirmed that the working efficiency is excellent when the flowability is 300mm compared to 260mm. compressive strength measurement result was relatively high at 260mm compared to 300mm because the number of pores due to decrease of water ratio was small.

Comparison of Co-registration Algorithms for TOPS SAR Image (TOPS 모드 SAR 자료의 정합기법 비교분석)

  • Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1143-1153
    • /
    • 2018
  • For TOPS InSAR processing, high-precision image co-registration is required. We propose an image co-registration method suitable for the TOPS mode by comparing the performance of cross correlation method, the geometric co-registration and the enhanced spectral diversity (ESD) matching algorithm based on the spectral diversity (SD) on the Sentinel-1 TOPS mode image. Using 23 pairs of interferometric pairs generated from 25 Sentinel-1 TOPS images, we applied the cross correlation (CC), geometric correction with only orbit information (GC1), geometric correction combined with iterative cross-correlation (GC2, GC3, GC4), and ESD iteration (ESD_GC, ESD_1, ESD_2). The mean of co-registration errors in azimuth direction by cross correlation and geometric matching are 0.0041 pixels and 0.0016 pixels, respectively. Although the ESD method shows the most accurate result with the error of less than 0.0005 pixels, the error of geometric co-registration is reduced to 0.001 pixels by repetition through additional cross correlation matching between the reference and resampled slave image. The ESD method is not applicable when the coherence of the burst overlap areas is low. Therefore, the geometric co-registration method through iterative processing is a suitable alternative for time series analysis using multiple SAR data or generating interferogram with long time intervals.

Validation on the Bodywave Magnitude Estimation of the 2017 DPRK's Nuclear Test by Source Scaling (지진원 상대비율 측정법을 이용한 2017년 북한 핵실험의 실체파 규모 검증)

  • Kim, Tae Sung
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.589-593
    • /
    • 2018
  • Democratic Peoples' Republic of Korea (DPRK) conducted the $6^{th}$ underground nuclear test at the Punggye-ri underground nuclear test site on September 27, 2017 12 hours 30 minutes of Korean local time. Comprehensive Nuclear-Test Ban Treaty Organization (CTBTO) under U.N. announced the body wave magnitude of the event was mb 6.1 while U.S. Geological Survey (USGS)'s calculation was mb 6.3. In this study, the differences of the magnitude estimates were investigated and verified. For this purpose, a source scaling between the $5^{th}$ and $6^{th}$ event, which's epicenters are 200 meters apart, was performed using seismic data sets from 30 broadband stations. The relative amplitude variations of the $6^{th}$ event compared to the $5^{th}$ event in the frequency domain was analyzed through the scaling. The increased amount of the bodywave magnitude $m_b$ for the $6^{th}$ event was calculated at 1 Hz, which was compared to those from USGS and CTBTO's calculations.

A Case Study of Sea Bottom Detection Within the Expected Range and Swell Effect Correction for the Noisy High-resolution Air-gun Seismic Data Acquired off Yeosu (잡음이 포함된 여수근해 고해상 에어건 탄성파 탐사자료에 대한 예상 범위에서의 해저면 선정 및 너울영향 보정 사례)

  • Lee, Ho-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.116-131
    • /
    • 2019
  • In order to obtain high-quality high-resolution marine seismic data, the survey needs to be carried out at very low-sea condition. However, the survey is often performed with a slight wave, which degrades the quality of data. In this case, it is possible to improve the quality of seismic data by detecting the exact location of the sea bottom signal and eliminating the influence of waves or swells automatically during data processing. However, if noise is included or the sea bottom signal is weakened due to sea waves, sea bottom detection errors are likely to occur. In this study, we applied a method reducing such errors by estimating the sea bottom location, setting a narrow detection range and detecting the sea bottom location within this range. The expected location of the sea bottom was calculated using previously detected sea bottom locations for each channel of multi-channel data. The expected location calculated in each channel is also compared and verified with expected locations of other channels in a shot gather. As a result of applying this method to the noisy 8-channel high-resolution air-gun seismic data acquired off Yeosu, the errors in selecting the strong noise before sea bottom or the strong subsurface reflected signal after the sea bottom signal are remarkably reduced and it is possible to produce the high-quality seismic section with the correction of ~ 2.5 m swell effect.

Soil Properties of Granitic Weathered Soils in the Landslide-prone Areas in Seoul (서울지역 화강암 풍화토 토층지반의 토질특성)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.29 no.1
    • /
    • pp.23-35
    • /
    • 2019
  • Landslides occur due to heavy rainfall in the summer season. Some of water may infiltrate into the ground; it causes a high saturation condition capable of causing a landslide. Soil properties are crucial in estimating slope stability and debris flow occurrence. The main study areas are Gwanaksan, Suraksan and Bukhansan (Mountain) in Seoul. A total of 44 soil samples were taken from the study area; and a series of geotechnical tests were performed. Physical and mechanical properties were obtained and compared based on region. As a result, among well-graded soils, they are classified as a clayey sand. Coarse-grained and fine-grained contents are approximately 95% and 5%, respectively, with very low amount of clay content. Density, liquid limit and dry unit weight are ranged in $2.62{\sim}2.67g/cm^3$, 27.93~38.15% and $1.092{\sim}1.814g/cm^3$. Cohesion and internal friction angle are 4 kPa and $35^{\circ}$ regardless of mountain area. Coefficient of permeability is varied between $3.07{\times}10^{-3}{\sim}4.61{\times}10^{-2}cm/sec$; it means that it results in great seepage. Permeability is inversely proportional to the uniformity coefficient and is proportional to the effective particle size. In the formal case, there was a difference by mountain area, while in the latter, the tendency was almost similar.

Fifty Years of Scientific Ocean Drilling (1968-2018): Achievements and Future Direction of K-IODP (해양 과학시추 50년 (1968-2018): 한국의 성과 및 미래 방향)

  • KIM, GIL YOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.30-48
    • /
    • 2019
  • The year 2018 is the $50^{th}$ anniversary of scientific ocean drilling. Nevertheless, we know more about the surface of the moon than the Earth's ocean floor. In other words, there are still no much informations about the Earth interior. Much of what we do know has come from the scientific ocean drilling, providing the systematic collection of core samples from the deep seabed. This revolutionary process began 50 years ago, when the drilling vessel Glomar Challenger sailed into the Gulf of Mexico on August 11, 1968 on the first expedition of the federally funded Deep Sea Drilling Project (DSDP). DSDP followed successively by Ocean Drilling Program (ODP), Integrated Ocean Drilling Program (old IODP), and International Ocean Discovery Program (new IODP). Concerning on the results of scientific ocean drilling, there are two technological innovations and various scientific research results. The one is a dynamic positioning system, enables the drilling vessel to stay fixed in place while drilling and recovering cores in the deep water. Another is the finding of re-entry cone to replace drill bit during the drilling. In addition to technological innovation, there are important scientific results such as confirmation of plate tectonics, reconstruction of earth's history, and finding of life within sediments. New IODP has begun in October, 2013 and will continue till 2023. IODP member countries are preparing for the IODP science plan beyond 2023 and future 50 years of scientific ocean drilling. We as IODP member also need to participate in keeping with the international trend.

Characteristics of Radon Reduction of Small-scale Water Supply System (소규모수도시설 지하수의 라돈저감 특성)

  • Cho, Byong-Wook
    • The Journal of Engineering Geology
    • /
    • v.29 no.1
    • /
    • pp.37-50
    • /
    • 2019
  • It is possible that radon removal in groundwater of small-scale water supply system (SWSS) is caused by atmospheric storage and aeration facilities installed in the water tank. Radon removal rates at water tank and tap of the 32 SWSS during summer season ranged from -69.3% to 62.7% (average 25.7%) and from -64.3% to 83.1% (average 30.3%) while those of 16 SWSS during autumn season ranged from 21.3% to 78.0% (average 42.8%) and from 17.7% to 66.9% (average 44.8%). The reason of higher radon removal rate in the autumn season compared with the summer season is due to higher atmospheric storage effect by lower groundwater use rate. The radon removal rates at the water tank from 12 SWSS were 47.4~94.0% (average 78.9%), in which the removal rates at the atmospheric storage are also included. Atmospheric storage and aeration can be used to reduce radon concentration in SWSS groundwater. For more efficient use of radon reduction, further studies are necessary to assess the radon removal rate considering variation conditions of radon concentration in groundwater, size and forms of water tank, change in groundwater usage rate, aeration capacity and ventilation facilities.

A study on the granulometric and clastshape characteristic of gravel terrace deposit at Jeongdongjin area (정동진 단구 자갈층과 충진 물질의 입도 및 형상 특성에 대한 연구)

  • Kim, Jong Yeon;Yang, Dong Yoon;Shin, Won Jeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.17-33
    • /
    • 2016
  • Samples from newly exposed outcrop of sedimentary layers forming Jeongdongjin coastal terrace in Gangreung area are collected and analyzed to find the sedimentary environment. The site are located at the gentle hillslope of the terrace surface area. The height of the outcrop is about 8m and the altitude of it's highest part is 68~73m MSL. The lowest part of this out crop is the partly consolidated sand layer with gravel veneer within it. It is found that this part is not in-situ weathered sand stone through the OSL method. This sand layer is overlain by the gravel layer with sand matrix. The shapes of the gravels from this part are mainly 'platy', 'elongated', and 'bladed' by the index of Sneed and Folk(1958). In addition, mean roundness is not so high. It is sceptical to regard this part as marine sediments which are continuously exposed to erosional processes. The boundary between the lowest sand layer and gravel layer showing the abrupt change in forming material without any mixture or transitional zone, so gravels are seemed to deposited after some degree of consolidation of the lowest sand layer. In addition, the hight of the boundary between layers are changed by the place, so the surface of the partly consolidated sand layer is not flat and has irregularity on topography when it buried by gravels. Main part of this out crop is the poorly sorted coarse gravel(22.4mm) with sand matrix($1.36{\phi}$) layer with at least 2m thick covering the relatively fine gravels discussed above. Over 20% of particles have 'very platy', 'very elongated' and 'very bladed' shape and only less than 5% of particles have 'compact' shape, So this particles are also very hard to be regard as marine gravels which are abraded by marine processes. It can be concluded that this gravel layer formed by fluvial processes rather than coastal processes base on the form of the clast and sedimentary structure. The gravel layer is covered by fine($3{\sim}4{\phi}$) material layers of psudo-gleization which showing inter-bedding of red and white layers. Chemical composition of matrix and other fine materials should be analyzed in further studies. It is attempted to fine the burial ages of the sediment using OSL method, but failed by the saturation. So it can be assumed that these sediments have be buried over 120ka.