• Title/Summary/Keyword: Mineral oils

Search Result 103, Processing Time 0.02 seconds

Dissolved Gas Analysis of Environment-Friendly Vegetable Insulating Oils (친환경 식물성 절연유의 유중가스 분석)

  • Choi, Sun-Ho;Kim, Kwan-Sik;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.4
    • /
    • pp.238-243
    • /
    • 2015
  • The vegetable insulating oils are substitute for the mineral oil in power transformer. Vegetable insulating oils has higher flash/fire point and biodegradability than conventional mineral oils. In this paper, we investigated the dissolved gas analysis of vegetable oils. In the experiment, I had to accelerated aging under the same conditions mineral oil and vegetable oils. Accelerated aging proceeded to about 100% of the life of oil-filled transformer. In addition, we performed gas analysis of insulating oil of accelerated aging progress. The experiment results of the five gases was measured with the exception of Hydrogen and Acetylene. The mineral oil and vegetable oils gas is generated in a similar tendency depending on the accelerated aging. As a result, vegetable oils, can be dissolved gas analysis by method such as mineral oil.

Research of Accelerated Aging According to Long-term Stability of Vegetable Oil (식물성절연유의 가속열화에 따른 장기적 안정성 분석)

  • Choi, Sun-Ho;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1148-1152
    • /
    • 2012
  • The vegetable-based insulating oils are substitutes for mineral oils in oil-filled transformer. The important properties of vegetable insulating oil is their higher flash/fire point and biodegradability than conventional mineral oils. The large oil-filled transformer eliminate the risk of explosion and fire should the transformer fail and oil ignite owing to high flash/fire point of vegetable insulating oil. In addition, higher biodegradability of vegetable insulating oils can let the oil spill damage reduced. In this experiment, the real oil-filled transformers using mineral oil and vegetable oil have accelerated aging. After working on the 100% accelerated aging experiment were conducted comparing the transformer. The hottest-spot temperature using thermal coefficients were calculated to determin the degree of accelerated aging. As a result, apply mineral oil transformer in accordance with the accelerated aging life come to an end. In contrast, vegetable insulating oils showed the opposite characteristics. Vegetable insulating oil compared to the mineral oil are found to be an long life. As a result, the vegetable oil has a long-term stability.

A Study of Chemical and Mechanical Properties of the Mineral and Synthetic Oil Added with Two Different Zn-DTPs (Zn-DTP를 첨가한 공유와 합성유의 화학적 기계적 성질에 관한 연구)

  • 박미선;조원오;한두희;강석춘;김종호
    • Tribology and Lubricants
    • /
    • v.10 no.1
    • /
    • pp.78-88
    • /
    • 1994
  • For the study of chemical and mechanical properties of the synthetic and mineral oil added with two different Zn-DTPs, base and formulated oils were analyzed and compared. Kinematic viscosity and total acid number (TAN) were tested at high temperature for formulated oils. Also the oils added with different alkyl groups of Zn-DTP were tested for thermal stability and TAN changes. The 4-ball machine was used to test for the mechanical properties, such as the coefficient of friction and wear. The worn areas after sliding test were analyzed with microscope and EDX, too. From the study, mineral and synthetic oil have different effects according to the various added ratio of the primary and secondary alkyl groups of Zn-DTP. Also the temperature of test oil affected the anti-wear and friction property of the formulated oils. For synthetic oil, the primery alkyl group of Zn-DTP made better friction properties than that of secondary, while, for mineral oil, secondary alkyt group was better only at low temperature for mineral oil.

Dielectric Characteristics due to BTA in Insulating Liquids for the Ignition Coil of Automobile (자동차 점화장치용 절연유의 BTA 함유에 따른 유전특성)

  • 신종열;조돈찬;조경순;이수원;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.253-256
    • /
    • 1997
  • Recently, mixture insulating oils is widely used in respect that the physical and the electrical properties is more excellentthan mineral oils, such as alkylbenzene oils and silicone oils, and that cost is lower than alkylbenzene oils or silicone oils. Also, it is important to research for the additive BTA(Benzotriazole) as a study for the phenomena of streaming electrification of mineral oils. So, mixture insulating oils class 7-2, is selected as a specimen in this experiments, and the contents of BTA in specimen are 0.2[ppm], 10[ppm] and 30[ppm], respectively. Then, the physical and the electrical properties for each specimen is made researches.

  • PDF

Research of Flow Velocity and BTA According to the Streaming Electrification of Vegetable Insulating Oils (식물성 절연유의 유속과 BTA에 따른 유동대전 현상 연구)

  • Choi, Sun-Ho;Bang, Jeong-Ju;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.791-797
    • /
    • 2012
  • Mineral insulating oils are an important insulating materials in oil-filled transformer. However, the mineral oil is the cause of the environmental problem. The vegetable oils are substitutes for mineral oil because of its biodegradability characteristic. As large size and high rating of the transformer increases, the losses increase at a faster rate. So insulating oil is forced circulation in the oil-filled transformer by using oil pumps. The flow electrification occurs when insulating oil was forced to be circulated. To check the flow electrification, had conducted experiments varying factors. As a result, the streaming electrification could see the changes according to flow velocity, oil temperature and insulation materials.

Tribological Performance of Multi-Walled Carbon Nanotubes in Mineral Oils under Boundary Lubricated Sliding (경계윤활 영역에서 다중벽 탄소나노튜브의 윤활 특성)

  • Baik Seunghyun;Lee Gyu-Sun;Yoon Do-Kyung;Lee Young-Ze
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.263-267
    • /
    • 2005
  • The tribological performance of multi-walled carbon nanotubes (MWNT) in mineral oils is investigated at ambient temperature. The frictional forces, wear amounts and cycles to scuffing of the oils with nanotubes and without those were measured using the ball-on-disk tester. It was found that there were little differences in the frictional forces and wear amounts of two oils. However, the scuffing times of oils with nanotubes were much longer than those of oils without nanotubes in sliding tests. The nanotubes were very effective on maintaining the oil gap and protecting the surfaces in boundary lubricated sliding.

Electrical Properties of Insulating Oils for Diagnostic X-ray Tube (진단용 X 선관 절연유의 전기적 특성)

  • Kim, K.C.;Lee, I.S.;Baik, G.M.;Kim, D.H.;Kim, W.G.;Hong, J.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.597-600
    • /
    • 2001
  • In order to investigate the electrical properties of X-ray tube oils for insulating and cooling, the breakdown characteristics in temperature range of $20\sim100[^{\circ}C]$, that of AC breakdown in 0.5~2.5[mm] of gap length, we are made researches. The classification for the physical properties of oil for X-ray tube by FTIR and H-NMR experiments was confirmed to type of mineral oils. As for the dependance of breakdown characteristics due to electrode gap length, breakdown voltage was found nearly uniform by impurity effect according to the increase of gap. As a result the characteristics for AC breakdown, the dielectric strength was increased to $90[^{\circ}C]$ but decreased over $90[^{\circ}C]$ in the temperature range.

  • PDF

Analysis on the Chemical and Electrical Characteristic of Vegetable oil by Accelerated Aging (가속열화에 따른 식물성절연유의 화학적.전기적 특성 분석)

  • Choi, Sun-Ho;Jeong, Jung-Il;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.984-989
    • /
    • 2011
  • Electrical insulation is one of the most important part in a high voltage apparatus. Recently, researchers are interested in the environmental friendly vegetable oil from environmental viewpoint. Accelerated aging transformer insulating material in vegetable oil was compared to that of mineral oil. Accelerated aging oil samples produced in the oven at $140^{\circ}C$ for 500, 1000, 1500, 2000hours. And Real transformer insulation oils samples of vegetable oil and mineral oil were aged by thermal cycles repeating from $30^{\circ}C$ to $120^{\circ}C$. Samples were analyzed at 42, 63, 93, 143, 190, 240, 300 cycles. The mineral and vegetable insulating oils were investigated for breakdown voltage, water content, total acid number, viscosity, volume resistivity, insulating paper and oil permittivity, and dissolved gas analyses. The breakdown voltage of the vegetable insulating oil is higher than that found for the mineral oil; the accelerated aging progress decreased the breakdown voltage. The vegetable oil had a higher water saturation than the mineral oil; the vegetable oil has the superior water characteristics and breakdown voltage. And high viscosity of vegetable oil, care has to be taken, especially when designing the cooling system for a large transformer.

The SIMDIST (Simulated Distillation) Analysis of Distributing Engine Oil (국내 유통 엔진오일 고온모사증류시험 분석)

  • Lim, Young-Kwan;Kim, Jiyeon;Kim, Jong-Ryeol;Ha, Jong-Han
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.632-637
    • /
    • 2017
  • The vehicle lubricant occupies upto 35% in a total lubricant market and engine oil occupies upto 77% in the vehicle lubricant market in Korea. A suitable quality management of the circulating engine oil is necessary for driver and engine protection. But, KS and synthetic engine oil products (involved over 30% synthetic oil) are exempt to any quality management under Petroleum and Alternative Fuel Business Act. It is also known that synthetic oils such as PAO (poly alpha olefin) have excellent properties and performance like anti-wear, varnish control and oxidation stability than those of mineral oils. For this reason, PAO has been used for an engine oil, rotary screw and reciprocating compressor in addition to heavy duty and other extreme service applications. In this study, our research group analyzed the chromatogram pattern for the mineral oil, PAO and mineral oil involved a typical ratio of PAO using SIMDIST (simulated distillation). In the SIMDIST chromatogram, the mineral oil showed a broad peak, while PAO showed a sharp typical peak. Also the oil with a large viscosity grade exhibited a long retention time due to the heavy molecular weight and high boiling point. In particular, the blended mineral oil with 20% PAO sample showed a distinctly different pattern compared to that of using the conventional mineral oil. For monitoring PAO contents in distributing engine oils, we analyzed the SIMDIST for 27 kinds of engine oils which were popularly sold in Korea. The analytic results indicate that all kinds of engine oils showed that PAO contents were below 20% in engine oil products. Moreover, the PAO titled product was found to have a small amount of PAO. Thus, we conclude that the related laws for the proper quality management of synthetic oils are needed to be established.

Investigations on Eco Friendly Insulating Fluids from Rapeseed and Pongamia Pinnata Oils for Power Transformer Applications

  • Thanigaiselvan, R.;Raja, T. Sree Renga;Karthik, R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2348-2355
    • /
    • 2015
  • Transformer mineral oil which is normally hydrocarbon based is non- biodegradable and pollutes the environment in all aspects. Though vegetable oils are eco-friendly in nature and potentially could be used in transformers as a replacement for the mineral oil, there usage is restricted because of their oxidative instability. The present work focuses on using rapeseed oil and pongamia (pongamia pinnata) oil as effective alternatives for the traditional mineral oil in power transformer. The oxidative stability of the rapeseed oil and pongamia oil is increased by using combinations of the natural and synthetic anti-oxidants as additives. The parameters like breakdown voltage, viscosity, flash point, fire point are measured for the rapeseed oil and pongamia oil with and without the additives as per IEC and ASTM standards. The results shown encouraging changes in the parameter values and ensures the use of the oils as a potential alternative insulation in power transformers.