• 제목/요약/키워드: Mineral nitrogen

검색결과 525건 처리시간 0.028초

경기도(京畿道) 광릉(光陵) 상수리나무 성숙림(成熟林)의 질소(窒素) 무기화(無機化)에 관(關)한 연구(硏究) (Nitrogen Mineralization and Nitrification in a Mature Quercus acutissima Stand in Kwangnung, Kyonggi Province)

  • 김춘식
    • 한국산림과학회지
    • /
    • 제87권1호
    • /
    • pp.20-26
    • /
    • 1998
  • 경기도 광릉 중부임업시험장 내에 위치한 상수리나무임분의 무기 질소 동태를 구명하기 위하여 3개의 $20{\times}10m$의 조사구를 선정하고 각 조사구로부터 직경 5cm, 김이 15cm 토양을 비닐주머니매설 배양법을 이용하여 1995년 11월부터 96년 11월까지 1년 동안 조사하였다. 조사 기간 동안 질소 무기화량은 95.2mg/kg/yr, 질산화량은 65.4mg/kg/yr 이었으며, 질산화가 질소 무기화에 차지하는 비율은 69%였다. 질소 무기화나 질산화에 영향을 미치는 환경 인자 중 토양 온도나 토양 수분 조건은 이 임분의 질소 무기화나 질산화에 큰 영향을 미치지 않았다.

  • PDF

일본 서남부 가고시마 와카미코 해저 열수환경에서 형성된 2:1 점토광물 내 암모늄 거동 및 질소동위원소 특성 (Ammonium Behavior and Nitrogen Isotope Characteristics of 2:1 Clay Minerals from Submarine Hydrothermal System in the Wakamiko Crater of Kagoshima Bay, Southwestern Japan)

  • 조재국;토시로 야마나카;신동복
    • 자원환경지질
    • /
    • 제54권1호
    • /
    • pp.151-160
    • /
    • 2021
  • 함암모늄 2:1 점토광물 내 암모늄 거동과 질소동위원소 특성을 살펴보기 위해 일본 남서부 해저 와카미코 화구(Wakamiko crater) 내 열수가 분출하는 두 지점에서 퇴적물 코어를 채취하여 스멕타이트로 대표되는 점토입자를 추출하였다. 점토입자 내 무기탄소 제거 후 순차적인 유기물 분해과정에서 감소하는 탄소-질소 비에 근거하여 무기질소 함량을 추정한 결과, 전질소에 대한 무기질소 비율은 SES 지점(Core#1093MG: av. 11.5%)에 비해 SWS 지점 (Core#1094MR: av. 18.2%)에서 높은 경향을 보였다. 후자에서 높은 광물 결정도를 보인 점은 상대적으로 진전된 광물화와 함께 교환성 암모늄이 비교환성 암모늄으로 전환된 결과로 해석된다. 단계적인 점토입자 내 교환성 암모늄의 제거과정에서 나타난 질소동위원소 조성 변화(SES 지점: Core#1093MG: -4.4 ~ +0.2 ‰, av. -2.4 ‰; SWS 지점: Core#1094MR: -0.7 ~ +3.0 ‰, av. +1.5 ‰)로부터 심부 마그마에서 비롯된 열류 및 열수에 의한 국부적인 온도변화는 함암모늄 2:1 점토광물의 형성에 관여한 유체 내 용존 암모늄과 암모니아 사이에서 질소동위원소 분별을 야기했을 것이다.

施肥量이 油菜 無機養分 吸收 및 油質에 미치는 影響 (The Effects of the Amount of Applied Fertilizer on the Mineral Nutrient Uptake and Oil Quality in Rapes)

  • Moon, Yong Sick;Chae Kyu Lim
    • The Korean Journal of Ecology
    • /
    • 제7권3호
    • /
    • pp.170-176
    • /
    • 1983
  • The results obtained from the experiments conducted to investigate Cruciferae plants in rape dependent on the amount of applied fertilizer in aspects of mineral nutrient uptake and on the effects of the composition of oil quality are as follows: Absorption of mineral nutrients in the respective pars of the plant body was high in nitorgen in the order of leaf and stem

  • PDF

The Use of Oyster Shell Powders for Water Quality Improvement of Lakes by Algal Blooms Removal

  • Huh, Jae-Hoon;Choi, Young-Hoon;Lee, Hyun-Jae;Choi, Woo Jeong;Ramakrishna, Chilakala;Lee, Hyoung-Woo;Lee, Shin-Haeng;Ahn, Ji-Whan
    • 한국세라믹학회지
    • /
    • 제53권1호
    • /
    • pp.1-6
    • /
    • 2016
  • In this year, Koreans have a shortage in agricultural and drinking water due to severe algal blooms generated in major lakes. Waste oyster shells were obtained from temporary storage near the workplace at which oysters were separated from their shells. Heating ($1000^{\circ}C$ for 1 h in air) was employed to convert raw oyster shell powders into calcium oxide powders that reacted efficiently with phosphorus and nitrogen to remove algal blooms from eutrophicated wastewater. As the dispersed amount of heated oyster shell powders was increased, water clarity and visual light penetration were improved. Coagulation, precipitation and carbonation process of the heated oyster shell powders in a water purifier facilitated removal of eutrophication nutrient such as phosphorus and nitrogen, which is both beneficial and economically viable. $CO_2$ implantation by carbonation treatment not only produced thermodynamically stable CaO in oyster shells to derive precipitated calcium carbonate (PCC) but also accelerated algal removal by activation of coagulation and precipitation process. The use of oyster shell powders led to a mean reduction of 97% in total phosphate (T-P), a mean reduction of 91% in total nitrogen (T-N) and a maximum reduction of 51% in chemical oxygen demand (COD), compared with the total pollutant load of raw algal solution. Remarkable water quality improvement of algal removal by heated oyster shell powders and PCC carbonation treatment will allow utilization as water resources to agricultural or industrial use.

Yield and Nitrogen Uptake under Reduced Nitrogen Fertilizer during Early Growth of Rice in the Rice-Barley Double Cropping System

  • Seo, Jong-Ho;Cho, Hyeon-Suk;Kim, Chung-Guk;Lee, Jin-Mo;Park, Seong-Ho
    • 한국작물학회지
    • /
    • 제49권1호
    • /
    • pp.1-6
    • /
    • 2004
  • N fertilizer required by rice could be reduced greatly in the rice-barley double cropping system than in the rice single cropping system. This study was conducted to investigate how much of the N fertilizer during the early stage of rice in the rice-barley double cropping system, could be saved compared to that in the rice single cropping system. This experiment was carried out at the paddy field of the National Crop Experiment Station in Suwon, Korea during three years from 1999 to 2001. Amounts of soil mineral nitrogen (SMN) and SPAD values of rice leaf during rice growing season in the rice-barley double cropping system were higher than those in the rice single cropping system under the same amount of N application during two years. Yield and N uptakes of rice at harvesting time were also higher in the rice-barley double cropping system than in the rice single cropping system during two years. Yield and N uptake of rice in the rice single cropping system were decreased when basal N fertilizer was omitted, but those reductions were not found by either omitting basal N fertilizer or omitting N fertilizer at tillering stage in the rice-barley double cropping system during 2000 and 2001. But yield and N uptakes of rice were decreased by 70 kg/10a and 2kgN/10a by the omission of both N application at basal and tillering stages in the rice-barley double cropping system in 2002. It was concluded that N fertilizer as much as tillering N fertilizer could be saved in the rice-barley double cropping system.

민자주방망이버섯의 분해와 분해과정에 따른 영양염류의 변화 (Mass Loss and Changes of Mineral Nutrients During the Decomposition of Lepista nuda)

  • 문형태;남궁정;이윤영;이종영;김정희
    • The Korean Journal of Ecology
    • /
    • 제23권1호
    • /
    • pp.33-37
    • /
    • 2000
  • 1998년 11월부터 12월 말까지 참나무림에서 민자주방망이버섯의 분해와 분해과정에 따른 영양 염류의 변화를 조사하였다. 자주방망이버섯 속의 민자주방망이버섯은 낙엽분해성 균류로 균륜을 형성하며, 가을부터 초겨울에 걸쳐 활엽수림에 단생 혹은 군생한다. 갓의 지름은 4∼12 cm로 연한 자주색이지만 시간이 지남에 따라 퇴색한다. 7주 동안의 분해과정에서 잔존량은 초기 무게의 35%이었다. 질소, 인, 칼릅, 칼슘, 마그네슘의 초기 함량은 각각 67.8 ㎎/g, 4.1 ㎎/g, 47.3 ㎎/g, 0.4 ㎎/g, 1.5 ㎎/g으로 특히 질소와 인 그리고 칼륨은 초본식물에 비해 현저히 높았다. 질소, 인, 칼륨, 칼슘 그리고 마그네슘의 잔존률은 각각 초기 값의 26.6%, 37.5%, 28.5%, 35.0%그리고 91.0%이었다. 버섯은 토양과 낙엽층 속에 널리 퍼진 균사를 통해 영양염류를 흡수하여 자실체에 집중시키고 이 자실체가 단기간에 분해되기 때문에 영양염류의 순환을 빠르게 하며, 이 과정에서 영양염류 재분배가 일어날 수 있다.

  • PDF

EFFECT OF ADDITIONS OF POTASSIUM AND NITROGEN INTO PRESS CAKE ON MAGNESIUM UTILIZATION OF GOATS WITH RELATION TO WATER INTAKE

  • Kim, S.A.;Ohshima, M.;Kayama, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제1권1호
    • /
    • pp.33-41
    • /
    • 1988
  • In a study about minerals cycling in grassland agro-ecosystem, investigation on relations among two minerals, potassium(K) and magnesium(Mg), and nitrogen(N) was performed. Four kinds of diets different in K and N levels were fed to four goats with a Latin-square method and $2{\times}2$ factorial design. As the basal diet, press cake silage prepared from Italian ryegrass was used because of its uniformity and comparatively low mineral concentrations. Supplementation of K and N were made using potassium bicarbonate and urea. In the experiment, it was clearly shown that high K concentration in the forage crops is the main reason of the low utilization of Mg in ruminant animals. However, high nitrogen intake resulted in the increase of magnesium retention, urinary potassium excretion, water intake and volume of urine and in the decreases of potassium intake minus urinary potassium excretion. The results of high nitrogen intake seemed to be produced in the following order;increase of urine, increase of water intake, increase of urinary potassium excretion, and decrease of intake minus urinary potassium excretion. The amount of potassium intake minus urinary potassium excretion had significantly close relationships with magnesium utilization and serum magnesium concentration. As a conclusion, higher nitrogen intake by ruminants seemed to be preferable for magnesium utilization through increased water intake and urinary potassium excretion, if the sufficient drinking water could be supplied to ruminants.

Transcription Factor OsDOF18 Controls Ammonium Uptake by Inducing Ammonium Transporters in Rice Roots

  • Wu, Yunfei;Yang, Wenzhu;Wei, Jinhuan;Yoon, Hyeryung;An, Gynheung
    • Molecules and Cells
    • /
    • 제40권3호
    • /
    • pp.178-185
    • /
    • 2017
  • Nitrogen is one of the most important mineral elements for plant growth. We studied the functional roles of Oryza sativa DNA BINDING WITH ONE FINGER 18 (OsDOF18) in controlling ammonium uptake. The growth of null mutants of OsDOF18 was retarded in a medium containing ammonium as the sole nitrogen source. In contrast, those mutants grew normally in a medium with nitrate as the sole nitrogen source. The gene expression was induced by ammonium but not by nitrate. Uptake of ammonium was lower in osdof18 mutants than in the wild type, while that of nitrate was not affected by the mutation. This indicated that OsDOF18 is involved in regulating ammonium transport. Among the 10 ammonium transporter genes examined here, expression of OsAMT1;1, OsAMT1;3, OsAMT2;1, and OsAMT4;1 was reduced in osdof18 mutants, demonstrating that the ammonium transporter genes function downstream of OsDOF18. Genes for nitrogen assimilation were also affected in the mutants. These results provide evidence that OsDOF18 mediates ammonium transport and nitrogen distribution, which then affects nitrogen use efficiency.

환경구배에 따른 붉은강남콩 ( Phaseolus multiflorus Willd. ) 의 에너지와 무기원소의 분배 (Allocation of energy and nutrients in phaseolus multiflorus willd. on environmental gradients)

  • Kim, Ok-Kyung
    • The Korean Journal of Ecology
    • /
    • 제15권4호
    • /
    • pp.345-354
    • /
    • 1992
  • Allocation patterns of energy and mineral elements were investigated with phaseolus multiflorus grown in the environmental gradients. The result showed different energy allocation patterns according to relative light intensities and nutrients. The optimal switching time of energy allocation from vegetative to resproductive growth was delated as decreasing relative light intensity. The switch of the shift to reproduction was timed earlier in phosphorus treatment and delayed in nitrogen treatment. Analyzing the mineral elements to various organs, patterns of energy allocation were different from those of mineral allocation. There was no significant difference for allocation patterns in relative light intensity gradients. it was shown that n and p were distributed over the reproductive organs, k mainly in stems, ca in leaves and na in roots. mg was evenly distributed in each organs.

  • PDF

Effect of soil physical properties on nitrogen leaching during sesame (Sesamum indicum L.) cultivation under lysimeter conditions

  • Chan-Wook Lee;Jung-Hun Ok;Yang-Min Kim;Yo-Sung Song;Hye-Jin Park;Byung-Keun Hyun;Ye-Jin Lee;Taek-Keun Oh
    • 농업과학연구
    • /
    • 제49권2호
    • /
    • pp.379-387
    • /
    • 2022
  • A large amount of the mineral nitrogen is necessary for crop growth. With the use of nitrogen fertilizers, agricultural yield has increased during the last few decades. However, at the same time, nitrate from the cultivated land can be a source of environmental pollution, especially in water systems. For nitrogen management, it is necessary to analyze the pattern of nitrogen movement in soil. In this study, nitrogen leaching in upland soils was evaluated using undisturbed lysimeters with different soil textures during sesame cultivation. The soil texture of the lysimeters was clay loam (Songjung series) and sandy loam (Sangju series) soils. Sesame was cultivated from May 25 to August 24 in 2020. The standard amount of NPK fertilizer (N-P2O5-K2O = 2.9-3.1-3.2 kg·10 a-1) was applied before sowing. The amount of nitrogen leaching was calculated by multiplying the nitrogen (NO3-N + NH4-N) concentration and the amount of water drained below 1.5 m soil depth. The water was drained through percolation into macropores in the clay loam lysimeter. In contrast, in the sandy loam lysimeter, water drained more slowly than in the clay loam lysimeter. There was a slight difference in the total amount of leachate during the cultivation period, but the amount of nitrogen leaching was high in sandy loam soil. During the sesame cultivation period, the amount of nitrogen leaching from clay soil was 5.64 kg·10 a-1, and 10.70 kg·10 a-1 for sandy soil. We found that there was a difference in leaching depending on the soil physical characteristics. Therefore, it is necessary to consider the characteristics of soil to evaluate the leaching of nitrogen.