• Title/Summary/Keyword: Mineral admixture

Search Result 263, Processing Time 0.025 seconds

An Experimental Study on Properties of Mortar use of discaded Bentonite by Heat Treatment as Mineral admixture (소성가공한 폐 벤토나이트를 혼화재로 사용한 모르터의 물성에 관한 실험적 연구 - 간접냉각을 중심으로 -)

  • 장진봉;김효열;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.64-69
    • /
    • 2001
  • This study is the fundamental report to propose the capability of discarded Bentonite by heat-treatment as concrete mineral admixture. The experiment is performed by flow test of mortar and by compressive strength of 7, 14, 28, 91 days, As a result of experiment about mortar using discarded Bentonite by heat-treatment, in the case of $500^{\circ}C$, $600^{\circ}C$, $700^{\circ}C$, $800^{\circ}C$.60min, compressive strength is superior to the every situation than plain Mortar. Especially, in the case of $700^{\circ}C$.60min, as strength activity index is measured by 109%, it can be applied as concrete mineral admixture. But, flow of Mortar using discarded Bentonite by heat-treatment is decreased about 2.5cm in the case of 30min and about 1.7cm in the case of 60min.

  • PDF

A Study on Basic Properties of Natural Minerals with Silica-Component as Admixture for Concrete (천연 실리카질 혼화재를 사용한 콘크리트의 기초적 특성 연구)

  • 최광일;김진춘;강민호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.52-56
    • /
    • 1996
  • In this study, when natural mineral with Silica components(Zeolite & Mudstone) abundant in Korea used as an admixture for concrete, it is investigated that the properties of strength increase and economic effect compared with Silica Fume, the general admixture of high strength concrete.

  • PDF

Effective Use of Aggregate Fines (석분의 효과적인 이용에 관한 연구)

  • 백신원
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.65-72
    • /
    • 2001
  • Portland cement concrete is made with coarse aggregate, fine aggregate, portland cement, water and, in some cases, selected chemical admixture such as air-entraining agents, water reducer, superplasticizer, and so on, and mineral admixture such as fly ash, silica fume, slags, etc. Typically, in the concrete, the coarse aggregate and fine aggregate will occupy approximately 80 percent of the total volume of the finished mixture. Therefore, the coarse and fine aggregates affect to the properties of the portland cement concrete. As the deposits of natural sands have slowly been depleted, it has become necessary and economical to produce crushed sand(manufactured fine aggregate). It is reported that crushed sand differs from natural sands in gradation, particle shape and texture, and that the content of micro fines in the crushed sand affect to the quality of the portland cement concrete. Therefore, the purpose of this paper is to investigate the characteristics of fresh and hardened concrete with higher micro fines. This study provides a firm data to apply crushed sand with higher micro fines.

  • PDF

Properties of Reformed Electric Arc Furnace Slag as Cement Admixtures (용융개질 전기로슬래그의 시멘트 혼화재로서 특성)

  • Kim, Kee-seok;Bae, In-kook;Seo, Joo-beom;Choi, Jae-Seok;Lee, Yoon-kyu;Kim, Hyung-seok
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.31-37
    • /
    • 2015
  • Ground granulated blast-furnace slag (GGBFS) which is by-product of steel industry has been recycled as a cement admixture though the other steel slags are used as aggregates. In this study, the electric arc furnace slag (EAFS) was used as a cement admixture after the reduction of iron oxide in the slag at the interface of molten slag and water quenching. Consequently, the reformed EAFS (REAFS) had higher grindability than that of granulated blast furnace slag. And in mortar tests, the strength properties of specimens using REAFS were 98% of plain specimens of GGBFS upto 20% replacement ratio of GGBFS with REAFS.

Rheology properties of mortar using mineral admixture (광물질 혼화재를 혼합한 모르타르의 유변학적 특성)

  • Kim, Yong-Jic;Kim, Young-Jin;Choi, Yun-Wang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.341-342
    • /
    • 2010
  • This paper presents rheology of mortar using mineral admixture(Ground granulated blast furnace slag and Fly ash). The measurement of the rheology of mortar, including viscosity and yield stress, as well as its compressive strength were also carried our.

  • PDF

A Study on the Effect of the Kinds and Replacement Ratios of Mineral Admixtures on the Development of Chloride Invasion Resistance Property of Concrete Immersed in Salt Water (혼화재 종류 및 치환율이 염수에 침지한 콘크리트의 내염성능 향상에 미치는 영향에 관한 연구)

  • Yoo Jae-Kang;Kim Dong-Seuk;Park Sang-Joon;Won Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.71-76
    • /
    • 2004
  • This paper investigate that the effect of the concrete containing mineral admixtures(pozzolanic materials such as fly-ash, ground granulated blast-furnace slag, silica fume and meta kaolin) on the resistance properties to chloride ion invasion. The purposed testing procedure was applied to the concrete added mineral admixtures for $3\sim4$ replacement ratios under W/B ratios ranged from 0.40 to 0.55. Specimens were immersed in $3.6\%$ NaCl solution for 330 days, and penetration depth, water soluble chloride contents and acid soluble chloride contents were measured in 28, 91, 182 and 330 days. Then, diffusion coefficient were calculated using total chloride contents. As a results. the kinds of mineral admixture and replacement ratios had a great effect on the resistance property of the concrete to chloride ion invasion compared with the plain concrete. And the optimal replacement ratios of mineral admixture had a limitation for each admixtures. The amount of acid soluble chloride ions and water soluble chloride ions were varied with the kinds of mineral admixtures and the penetration depth from the concrete skin. Chloride diffusion coefficient of each concretes decreased with the time elapsed. and the diffusion coefficients of the concrete immersed salt water for 330 days had a establishment with the compressive strength measured before immersing.

  • PDF

Estimation of the Setting Time of the Super Retarding Concrete Combining Mineral Admixtures (혼화재를 조합 사용한 초지연 콘크리트의 응결시간 추정)

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.3
    • /
    • pp.111-117
    • /
    • 2008
  • This study provides the setting time prediction method of super retarding concrete incorporating mineral admixtures at the same time including fly ash(FA), blast furnace slag(BS) based on maturity method. The setting time was retarded, as super retarding agent contents increase and curing temperature decreases. In addition, apparent activation energy by Arrhenius function was ranged from $24{\sim}35KJ/mol$ with slightly difference along with mixture proportion. This value is smaller than existing value $30{\sim}50KJ/mol$. It is Indicated that equivalent age using setting time can be a proper method to predict setting time and it also exhibited comparable relativity between prediction value and measurement value. Therefore, this study provided setting time prediction value with super retarding agent contents and mineral admixture combination. Setting time prediction equation provided herein is possibly valid for estimating precise setting time of the super retarding concrete at the job site.

Mechanical Properties and ASR Behavior of Recycled Glass Fine Aggregate Mortar Mixed with Mineral Admixture (혼화재를 혼입한 순환유리잔골재 모르타르의 역학적 특성과 ASR 거동)

  • Eu, Ha-Min;Kim, Guy-Yong;Park, Jun-Young;Sasui, Sasui;Choi, Byung-Cheol;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.195-196
    • /
    • 2023
  • In this study, the mechanical properties, alkali-silica reaction(ASR) expansion and residual mechanical properties after ASR of waste glass fine aggregate(GS) mortar according to mineral mixture were evaluated. As a result, it was found that the mineral mixture reduces the ASR expansion. However, mechanical properties and residual mechanical properties have decreased.

  • PDF

An Experimental Study on Characteristics of Flexural Behavior in RC Member with Mineral Admixture under Calcium Leaching Degradation (칼슘용출 열화 조건에서 광물질 혼화재를 사용한 RC부재의 휨 거동에 관한 실험적 연구)

  • Lee, Gyung-Jong;Choi, So-Yeong;Choi, Yoon-Suk;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.16-25
    • /
    • 2018
  • Concrete is a suitable construction material for long-term structure, however, it is needed to understand the calcium leaching damage caused by exposure to underground pure water for a long time. In this paper, it is experimentally investigated that the characteristics of flexural behavior in RC member damaged by calcium leaching degradation. From the test results, when calcium leaching is happened, yielding load and flexural rigidity is reduced, neutral axis depth and displacement is increased. That is, calcium leaching degradation adversely affects RC member performance. And, when the mineral admixture is used in the calcium leaching environment, it is considered that the optimal replacement ratio should be prepared according to the type of mineral admixture.

The Study on the Compressive Strength Properties of Mortar using Discarded Bentonite Powder by the Cooling Method after Heat Treatment (폐벤토나이트 분말의 소성 및 냉각조건에 따른 모르터의 압축강도 발현특성에 관한 연구)

  • Kim, Hyo-Youl
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.87-94
    • /
    • 2004
  • As the bentonite is main material to prevent from collapse of drilling hole at underground excavation works, it is increased using quantity on construction industry day by day. But, the discarded bentonite that is over using at underground excavation works is caused various enviromental trouble as soil and water pollution est. Therefore, this study aims to propose a foundamental report for pozzolan reaction of discarded Bentonite powder by heat-treatment and cooling as concrete mineral admixture. To find out pozzolan reaction ability of discarded Bentonite powder by indirect cooling & cooling using of water after heat-treatment, the experiments are excuted flow test & compressive strength on age of mortar using discarded Bentonite powder. As a result of this study, discarded Bentonite powder can be utilized as concrete mineral admixture by heat-treatment and especially, pozzolan reaction ability of discarded Bentonite powder is superior to the situation of 600℃. 60min & cooling using of water.