• Title/Summary/Keyword: Mineral Water

Search Result 2,002, Processing Time 0.034 seconds

The effects of fermented milk intake on the enamel surface (유산균 발효유 섭취가 법랑질 표면에 미치는 영향)

  • Kim, Kyung-Hee;Choi, Choong-Ho
    • Journal of Korean society of Dental Hygiene
    • /
    • v.21 no.5
    • /
    • pp.507-515
    • /
    • 2021
  • Objectives: The aim of this study was to evaluate the extent of the potential erosion of enamel induced by three different types of commercial fermented milk using the pH cycle model. Methods: Specimens were treated and soaked up in three types of fermented milk and in mineral water for 10 min, four times a day for 8 days, and all of the specimens were immersed in artificial saliva outside of treatment times. The microhardness of the surface was measured by a microhardness tester, and a scanning electron microscope (SEM) was used to identify the enamel surface morphology. Results: The differences in the surface microhardness (ΔVHN) of enamel were different among the groups (p<0.05). The four groups were in descending order of ΔVHN: the liquid type group, condensed-drink type group, condensed-stirred type group, and control group. The liquid type group had a higher ΔVHN than the other two fermented milk groups (p<0.05). Based on SEM observation, the most severe surface damage was due to the liquid type of fermented milk. Conclusions: Customers' careful discretion is advised when purchasing these types of fermented milk. This information is anticipated to be of much value in the prevention of dental erosion.

Geoacoustic Model at the YSDP-105 Long-core Site in the Mid-eastern Yellow Sea (황해 중동부 해역 YSDP-105 심부코어 지점의 지음향 모델)

  • Ryang, Woo-Hun;Jin, Jae-Hwa;Hahn, Jooyoung
    • Journal of the Korean earth science society
    • /
    • v.40 no.1
    • /
    • pp.24-36
    • /
    • 2019
  • In the mid-eastern Yellow Sea, glacio-eustatic sea-level fluctuations and a regional tectonic subsidence have combined to represent an aggradational stacking pattern of sedimentary units during late Pleistocene-Holocene. The accumulated sediments are divisible into two-type units of Type-A and Type-B in high-resolution air-gun seismic profiles and the deep-drilled core of YSDP-105. Type-A unit largely comprises clast-rich coarse-grained sediments of non-marine to paralic origin, whereas Type-B unit consists mostly of tidal fine-grained sediments. Based on a bottom model of the sedimentary units, this study suggested a geoacoustic model of long-coring bottom layers at the YSDP-105 drilling site of the mid-eastern Yellow Sea. The geoacoustic model of 64-m depth below the seafloor with four-layer geoacoustic units was reconstructed in continental shelf strata at 45 m in water depth. For actual modeling, the geoacoustic property values of the models were compensated to in situ depth values below the seafloor using the Hamilton modeling method. We suggest that the geoacoustic model will be used for geoacoustic and underwater acoustic experiments of mid- and low-frequency reflecting on the deep bottom layers in the mid-eastern Yellow Sea.

Evaluation on Mechanical Performance and Chloride Ion Penetration Resistance of On-Site Shotcrete Made with Slurry-Type Accelerator (슬러리형 급결제를 활용한 현장적용 숏크리트의 역학적 성능 및 염해저항성 평가)

  • Kim, Hyun-Wook;Yoo, Yong-Sun;Han, Jin-Kyu;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.507-515
    • /
    • 2018
  • The purpose of this research is to develop a slurry-type accelerator that contains various beneficial properties such as reduction of dust generation, lower alkalinity, early age strength development, etc., and uses such slurry type accelerator to produce high performance shotcrete that present excellent resistant against chloride ion penetration. In this work, shotcrete mixtures of 0.44 and 0.338 water-to-binder ratio (w/b) were produced at construction site using slurry-type accelerator. The mechanical properties and chloride ion penetration resistance of such shotcrete (including base concrete) were evaluated. According to the experimental results, the slurry-type accelerator was successfully used to produce both w/b 0.44 and 0.338 shotcretes. The 1 day and 28 day compressive strength of shotcrete were found to be closer to or higher than 10MPa and 40MPa, respectively. The w/b 0.338 shotcrete that used 40% replacement of blast furnace slag showed lower compressive strength than w/b 0.44 shotcrete without any mineral admixture at 1 day. However, the compressive strength with 40% blast furnace slag increased significantly at 28 day. Moreover, there was more than 50% increase in chloride ion penetration resistance with blast furnace slag, showing its strong potential for higher performance shotcrete application.

Soil Properties of Granitic Weathered Soils in the Landslide-prone Areas in Seoul (서울지역 화강암 풍화토 토층지반의 토질특성)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.29 no.1
    • /
    • pp.23-35
    • /
    • 2019
  • Landslides occur due to heavy rainfall in the summer season. Some of water may infiltrate into the ground; it causes a high saturation condition capable of causing a landslide. Soil properties are crucial in estimating slope stability and debris flow occurrence. The main study areas are Gwanaksan, Suraksan and Bukhansan (Mountain) in Seoul. A total of 44 soil samples were taken from the study area; and a series of geotechnical tests were performed. Physical and mechanical properties were obtained and compared based on region. As a result, among well-graded soils, they are classified as a clayey sand. Coarse-grained and fine-grained contents are approximately 95% and 5%, respectively, with very low amount of clay content. Density, liquid limit and dry unit weight are ranged in $2.62{\sim}2.67g/cm^3$, 27.93~38.15% and $1.092{\sim}1.814g/cm^3$. Cohesion and internal friction angle are 4 kPa and $35^{\circ}$ regardless of mountain area. Coefficient of permeability is varied between $3.07{\times}10^{-3}{\sim}4.61{\times}10^{-2}cm/sec$; it means that it results in great seepage. Permeability is inversely proportional to the uniformity coefficient and is proportional to the effective particle size. In the formal case, there was a difference by mountain area, while in the latter, the tendency was almost similar.

Fifty Years of Scientific Ocean Drilling (1968-2018): Achievements and Future Direction of K-IODP (해양 과학시추 50년 (1968-2018): 한국의 성과 및 미래 방향)

  • KIM, GIL YOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.30-48
    • /
    • 2019
  • The year 2018 is the $50^{th}$ anniversary of scientific ocean drilling. Nevertheless, we know more about the surface of the moon than the Earth's ocean floor. In other words, there are still no much informations about the Earth interior. Much of what we do know has come from the scientific ocean drilling, providing the systematic collection of core samples from the deep seabed. This revolutionary process began 50 years ago, when the drilling vessel Glomar Challenger sailed into the Gulf of Mexico on August 11, 1968 on the first expedition of the federally funded Deep Sea Drilling Project (DSDP). DSDP followed successively by Ocean Drilling Program (ODP), Integrated Ocean Drilling Program (old IODP), and International Ocean Discovery Program (new IODP). Concerning on the results of scientific ocean drilling, there are two technological innovations and various scientific research results. The one is a dynamic positioning system, enables the drilling vessel to stay fixed in place while drilling and recovering cores in the deep water. Another is the finding of re-entry cone to replace drill bit during the drilling. In addition to technological innovation, there are important scientific results such as confirmation of plate tectonics, reconstruction of earth's history, and finding of life within sediments. New IODP has begun in October, 2013 and will continue till 2023. IODP member countries are preparing for the IODP science plan beyond 2023 and future 50 years of scientific ocean drilling. We as IODP member also need to participate in keeping with the international trend.

Collapse Type and Processes of the Geumosan Caldera in the Southern Gumi, Korea (구미 남부 금오산 칼데라의 함몰 유형과 과정)

  • Hwang, Sang Koo;Son, Young Woo;Seo, Seung Hwan;Kee, Weon-Seo
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.35-48
    • /
    • 2021
  • The Gumi basin, situated in the mid-southeastern Yeongnam Massif, has the Cretaceous stratigraphy that is divided into Gumi Formation, andesitic rocks (Yeongamsan Tuff, Busangni Andesite), rhyolitic rocks (Obongni Tuff, Doseongul Rhyolite, Geumosan Tuff) and Intrusives (ring dikes, other dikes) in ascending order. The Geumosan Tuff is composed mostly of many ash-flow tuffs which are associated with Geumosan caldera along with the ring dikes. The caldera is outlined by ring faults and dikes and has about 3.5 × 5.6 km in diameters. The intracaldera volcanics show a downsag structure that is dipped inward in their flow and welding foliations. The caldera block represent an asymmetric subsidence, which drops 350 m in the northern margin and 600 m in the southern one. Based on these data, the Geumosan caldera is geometrically classified as an asymmetric piston subsidence caldera that suggests a single caldera cycle. The caldera reflects the piston subsidence of the caldera block bounded by the outward-dipping ring faults following a voluminous eruption of magma from the chamber. The downsag in the caldera block refers to the downsagging during the initial subsidence at the same time as the full development of the bound fault. In the ring fissures following the sagging, magma was injected due to the overpressure of magma chamber caused by subsidence.

Removal of residual VOCs in a collection chamber using decompression for analysis of large volatile sample

  • Lee, In-Ho;Byun, Chang Kyu;Eum, Chul Hun;Kim, Taewook;Lee, Sam-Keun
    • Analytical Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.23-35
    • /
    • 2021
  • In order to measure the volatile organic compounds (VOCs) of a sample which is too large to use commercially available chamber, a stainless steel vacuum chamber (VC) (with an internal diameter of 205 mm and a height of 50 mm) was manufactured and the temperature of the chamber was controlled using an oven. After concentrating the volatiles of the sample in the chamber by helium gas, it was made possible to remove residual volatile substances present in the chamber under reduced pressure ((2 ± 1) × 10-2 mmHg). The chamber was connected to a purge & trap (P&T) using a 6 port valve to concentrate the VOCs, which were analyzed by gas chromatography-mass spectrometry (GC-MS) after thermal desorption (VC-P&T-GC-MS). Using toluene, the toluene recovery rate of this device was 85 ± 2 %, reproducibility was 5 ± 2 %, and the detection limit was 0.01 ng L-1. The method of removing VOCs remaining in the chamber with helium and the method of removing those with reduced pressure was compared using Korean drinking water regulation (KDWR) VOC Mix A (5 μL of 100 ㎍ mL-1) and butylated hydroxytoluene (BHT, 2 μL of 500 ㎍ mL-1). In case of using helium, which requires a large amount of gas and time, reduced pressure ((2 ± 1) × 10-2 mmHg) only during the GC-MS running time, could remove VOCs and BHT to less than 0.1 % of the original injection concentration. As a result of analyzing volatile substances using VC-P&T-GC-MS of six types of cell phone case, BHT was detected in four types and quantitatively analyzed. Maintaining the chamber at reduced pressure during the GC-MS analysis time eliminated memory effect and did not affect the next sample analysis. The volatile substances in a cell phone case were also analyzed by dynamic headspace (HT3) and GC-MS, and the results of the analysis were compared with those of VC-P&T-GC-MS. Considering the chamber volume and sample weight, the VC-P&T configuration was able to collect volatile substances more efficiently than the HT3. The VC-P&T-GC-MS system is believed to be useful for VOCs measurement of inhomogeneous large sample or devices used inside clean rooms.

Growth performance and blood profiles of Hanwoo steers at fattening stage fed Korean rice wine residue

  • Kim, Seon Ho;Ramos, Sonny C.;Jeong, Chang Dae;Mamuad, Lovelia L.;Park, Keun Kyu;Cho, Yong Il;Son, Arang;Lee, Sang-Suk
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.812-823
    • /
    • 2020
  • The aim of this study was to investigate the effects of Korean rice wine residue (RWR) on the growth performance and blood profiles of Hanwoo steers in the fattening stage. In situ and in vivo experiments were conducted to analyze rumen fermentation characteristics and total tract digestibility, respectively. Three cannulated Hanwoo steers (mean body weight: 448 ± 30 kg) were used in both analyses. The growth performance of 27 experimental animals in the fattening stage (initial body weight: 353.58 ± 9.76 kg) was evaluated after 13 months of feeding. The animals were divided into three treatment groups (n = 9/group). The treatments comprised total mixed ration (TMR) only (CON), TMR + 10% RWR (10% RWR), and TMR + 15% RWR (15% RWR). The diets of equal proportions were fed daily at 08:00 and 18:00 h based on 2% of the body weight. The animals had free access to water and trace mineral salts throughout the experiment. Supplementation of 15% RWR significantly decreased (p < 0.05) the rumen fluid pH compared with the control treatment, but there was no significant difference in the total volatile fatty acid concentration. It also significantly increased (p < 0.05) dry matter digestibility compared with the other treatments. The total weight gain and average daily gain of the animals in the RWR-supplemented groups were significantly higher (p < 0.05) than those in the control group. Furthermore, the feed intake and feed efficiency of the RWR-supplemented groups were higher than those of the control group. Supplementation of RWR did not affect the alcohol, albumin, glucose, total cholesterol, triglyceride, and low-density lipoprotein concentrations, and aspartate aminotransferase and alanine transaminase activities in the blood; these parameters were within the normal range. The high-density lipoprotein and creatinine concentrations were significantly higher in the 15% RWR group, whereas the blood urea nitrogen concentration was significantly higher in the 10% RWR group than in the other groups. These results suggest that TMR with 15% RWR can serve as an alternate feed resource for ruminants.

Changes in sedimentary structure and elemental composition in the Nakdong Estuary, Korea (낙동강 하구역 퇴적구조 및 원소조성 변화에 관한 연구)

  • Kim, Yunji;Kang, Jeongwon;Park, Seonyoung
    • Journal of Wetlands Research
    • /
    • v.23 no.3
    • /
    • pp.213-223
    • /
    • 2021
  • To understand the sedimentary environment of Scirpus planiculmis habitat (Myeongji and Eulsuk tidal flats) in the Nakdong Estuary, this study analyzed the statistical parameters (sorting, skewness, and kurtosis) of grain size data and the major (Al, Fe, Mn, Mg, Ca, Na, K, Ti, and P), minor (Li, Sc, V, Cr, Co, Ni, Cu, Zn, Sr, Zr, Cs, Pb, Th, and U), and rare earth elements (REEs) in sediment cores. For Myeongji, the sediment structure of the upper part of the cores was poorly sorted, more finely skewed, and more leptokurtic due to construction of the West gate. By contrast, the Eulsuk cores all differed due to the contrasting floodgate operation patterns of the West and East gates. The linear discriminate function (LDF) results corresponded to the statistical parameters for grain size. At the Eulsuk tidal flat (sites ES05 and ES11), elemental distributions were representative of Al-, Fe- and Ca-associated profiles, in which the elements are largely controlled by the accumulation of their host minerals (such as Na- and K-aluminosilicate and ferromagnesium silicate) and heavy detrital minerals at the sites. Detrital minerals including the aluminosilicates are major factors in the elemental compositions at ES05, diluting the REE contents. However, clay minerals and Fe-oxyhydroxides, as well as REE-enriched heavy minerals, appeared to be controlling factors of the elemental composition at ES11. Therefore, the mineral fractionation process is important in determining the elemental composition during sedimentation, which reflects the depositional condition of riverine-saline water mixing at both sites.

Design Considerations for Buffer Materials and Research Status of Enhanced Buffer Materials (완충재 설계시 고려사항 및 고기능 완충재 연구 현황)

  • Lee, Gi-Jun;Yoon, Seok;Kim, Taehyun;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.32 no.1
    • /
    • pp.59-77
    • /
    • 2022
  • Currently, the design reference temperature of the buffer material for disposing of high-level radioactive waste is less than 100℃, so if the heat dissipation capacity of the buffer material is improved, the spacings of the disposal tunnel and the deposition hole in the repository can be reduced. First of all, this study tries to analyze the criteria for thermal-hydraulic-mechanical performance of the buffer materials and to investigate the researches regarding the enhanced buffer materials with improved thermal conductivity. First, the thermal conductivity should be as high as possible and is affected by dry density, water content, temperature, mineral composition, and bentonite type. the organic content of the buffer material can have a significant effect on the corrosion performance of a canister, so the organic content should be low. In addition, hydraulic conductivity of the buffer material should be less than that of near-field rock and swelling pressure should be appropriate for buffer materials to function properly. For the development of enhanced buffer materials, additives such as sand, graphite, and graphite oxide are typically used, and a thermal conductivity can be greatly improved with a very small amount of graphite addition compared to sand.