• Title/Summary/Keyword: Mineral Water

Search Result 2,009, Processing Time 0.031 seconds

Flotation for Recycling of a Waste Water Filtered from Molybdenite Tailings (몰리브덴 선광광미 응집여과액 재활용을 위한 부유선별 특성)

  • Park, Chul-Hyun;Jeon, Ho-Seok;Han, Oh-Hyung;Kim, Byoung-Gon;Baek, Sang-Ho;Kim, Hak-Sun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.235-242
    • /
    • 2010
  • Froth flotation using the residual water in the end of flotation process has been performed through controlling of pH. IEP (isoelectric point) of molybdenite and quartz in distilled water was below pH 3 and pH 2.7, respectively and the stabilized range was pH 5~10. In case of a suspension in reusing water, zeta potential of molybdenite decreased to below -10 mV or less at over pH 4 due to residual flocculants. As result of pH control, flotation efficiency in the alkaline conditions was deteriorated by flocculation, resulting from expanded polymer chain, ion bridge of the divalent metal cations ($Ca^{2+}$), and hydrophobic interactions between the nonpolar site of polymer/the hydrophobic areas of the particle surfaces. However, the weak acid conditions (pH 5.5~6) improved the efficiency of flotation as hydrogen ions neutralize polymer chains and then weakened its function. In cleans after rougher flotation, the Mo grade of 52.7% and recovery of 90.1% could be successfully obtained under the conditions of 20 g/t kerosene, 50 g/t AF65, 300 g/t $Na_2SiO_3$, pH 5.5 and 2 cleaning times. Hence, we developed a technique which can continuously supply waste water filtered from tailings into the grinding-rougher-cleaning processes.

Effect of Soy Protein and Exercise on Bone Mineral Density and Bone Mineral Content in Growing Male Rats

  • Park, Mi-Ja
    • Journal of Community Nutrition
    • /
    • v.6 no.1
    • /
    • pp.48-54
    • /
    • 2004
  • The purpose of this study was to examine the effects of dietary protein and exercise on bone mineral density and bone mineral content of growing male rats. Forty male, Sprague-Dawley rats(age 21 days) were assigned to four groups that underwent 9 weeks of experimental treatment. Animals were assigned to one of two exercise treatments (treadmill running or sedentary). The exercise and nonexercise group were fed a diet containing casein or soy with rich isoflavones (3.4mg/g protein). The exercise group ran on a rodent treadmill(speed of 15m/min for 30min) three days per week during the 9-week study period. All rats were fed an experimental diet and deionized water ad libitum for 9 weeks. Total bone mineral density (BMD), total bone mineral content (BMC), total body calcium, spine BMD and BMC, and femur BMD and BMC were determined by using dual energy x-ray absorptiometry (FIXI-mus, GE Lunar Radiation Cooperation, Madison, WI, USA). The soy diet group appears to have a significantly higher total BMD/weight and total BMC/ weight, spine BMD/weight, spine BMC/weight, femur BMD/weight and femur BMC/weight compared to the casein group in nonexercise and exercise. The exercise group had significantly greater total BMD/weight and BMC/ weight, spine BMD/weight and BMC/weight, femur BMD/weight and BMC/weight compared to the nonexercise group when the protein source was casein. The exercise combined soy group had significantly greater total BMD/weight and BMC/weight, spine BMD/weight and BMC/weight, femur BMD/weight and BMC/weight, compared to the exercise combined casein group. The results indicate that exercise had a positive influence on bone mineral density and bone mineral content and soy significantly affect on bone mineral density and bone mineral content for the 9 weeks experimental period. It can be concluded that exercise combined with a soy diet is most beneficial for acquisition of spine bone mineral density in young growing male rats. This convincing evidence suggests that a change in life style such as increasing exercise and consumption of soy protein is a practical strategy for significantly reducing the incidence of osteoporosis.

Geochemistry and Mineralogical Characteristics of Precipitate formed at Some Mineral Water Springs in Gyeongbuk Province, Korea (경북지역 주요 약수의 지화학과 침전물의 광물학적 특성)

  • Choo, Chang-Oh;Lee, Jin-Kook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.139-151
    • /
    • 2009
  • Mineralogical characteristics of secondary precipitate formed at some mineral water springs in Gyeongbuk Province, Korea were studied in relation to water chemistry. The chemical water types of mineral water springs are mostly classified as $Ca-HCO_3$ type, but $Na(Ca)-HCO_3$ and $Ca-SO_4$ types are also recognized. Ca, Fe, and $HCO_3\;^-$ are the most abundant components in the water. The pH values of most springs lie in 5.76${\sim}$6.81, except Hwangsu spring having pH 2.8. Saturation indices show that all springs are supersaturated with respect to iron minerals and oxyhydroxides such as hematite and goethite. The result of particle size analysis shows that the precipitate is composed of the composite with various sizes, indicating the presence of iron minerals susceptible to a phase transition at varying water chemistry or the mixtures consisting of various mineral species. The particle size of the reddish precipitate is larger than that of the yellow brown precipitate. Based on XRD and SEM analyses, the precipitate is mostly composed of ferrihydrite (two-line type), goethite, schwertmannite, and calcite, with lesser silicates and manganese minerals. The most abundant mineral fanned at springs is ferrihydrite whose crystals are $0.1{\sim}2\;{\mu}m$ with an average of $0.5\;{\mu}m$ in size, characterized by a spherical form. It should be interestingly noted that schwertmannite forms at Hwangsu spring whose pH is very low. At Shinchon spring, Gallionella ferruginea, one of the iron bacteria, is commonly found as an indicator of the important microbial activity ascribed to the formation of iron minerals because very fine iron oxides with a spherical form are closely distributed on surfaces of the bacteria. A genetic relationship between the water chemistry and the formation of the secondary precipitate from mineral water springs was discussed.

An integrated studies for salt-water intrusion in Yeonggwang-gun, Korea

  • Hwang Seho;Chi Sejung;Lee Won-suk;Shin Jehyun;Park Inhwa;Huh Dae-Gee;Lee Sang-kyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.455-458
    • /
    • 2003
  • A combination of drilling, hydrogeochemical survey, geophysical survey and the numerical modelling for the flow and transport of groundwater was performed to evaluate the seawater intrusion in Baeksu-eup, Yeonggwang-gun, Korea. The survey area extends to over 24 $km^2$. Twelve wells were also drilled for the collection of geologic, geochemical, hydrologic, and geophysical logging data to delineate the degree and vertical extent of seawater intrusion. To evaluate and map the salinity in a coastal aquifer, geophysical data and hydrogeochemical results were used. Layer parameters derived from VES data, various in situ physical properties from geophysical well loggings, and the estimated equivalent NaCl concentration were used as the useful input parameters for the numerical simulation with density-dependent flow. Our multidisciplinary approach for evaluating the seawater intrusion can be considered as a valuable attempt to enhancing the utilization of various data and the reliability of numerical ground modelling.

  • PDF

Characteristics of Calcium Leaching Resistance for Concrete Mixed with Mineral Admixture (광물질 혼화재를 혼합한 콘크리트의 칼슘용출 저항 특성)

  • Choi, So-Yeong;Choi, Yoon-Suk;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.59-67
    • /
    • 2016
  • Concrete is a very useful construction material for the sealing disposal of hazardous substances. In general, mass concrete is applied to these structures. And, the mineral admixtures are recommended for the long term performance. Calcium leaching could be happened due to the contact with pure water in underground structures. Thus, it is needed to evaluate the resistance of calcium leaching for concrete mixed with mineral admixtures. From the test results, the mineral admixtures are effective to the improvement of long term compressive strength and chloride diffusion coefficient in concrete members. When calcium leaching is happened, however, the reduction of compressive strength and chloride penetration resistance is severe than OPC case, the micro pore distribution is adversely affected. Consequently, when the mineral admixtures are applied to underground structures which is exposed to calcium leaching environment, it is desirable to reduce water-to-binder ratio, to expose after the sufficient pozolanic reaction, and to use BFS than FA.

Cloud Generation Using a Huge Vertical Mine

  • Ma, Chang-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E2
    • /
    • pp.78-88
    • /
    • 2006
  • In order to study the characteristics of cloud, a real-scale experiment for cloud generation was carried out using an extinct vertical mine (430 m height) located in the northeastern Honshu, Japan. The dry particles generated from the three-step concentrations of NaCl solutions were used for cloud generation. The number size distributions of initial dry particles and cloud droplets were monitored by Scanning Mobility Particle Sizer (SMPS) and Forward Scattering Spectrometer Probe (FSSP) at bottom and upper sites of pit, respectively. The polymeric water absorbent film (PWAF) method was employed to measure liquid water content ($W_L$) as a function of droplet size. Moreover the chemical properties of individual droplet replicas were determined by micro-PIXE. The CCN number concentration shows the lognormal form in dependence of the particle size, while the number size distributions of droplets are bimodal showing the peaks around $9{\mu}m$ and $20{\mu}m$ for every case. In comparison to background mineral particles, right shifting of size distribution line for NaCl particles was occurred. When NaCl solutions with three-step different concentrations were neulized, $W_L$ shows the strong droplet size dependence. It varied from $10.0mg\;m^{-3}$ up to $13.6mg\;m^{-3}$ with average $11.6mg\;m^{-3}$. A good relationship between $W_L$ and cloud droplet number concentration was obtained. Both chemical inhomogeneities (mixed components with mineral and C1) and homogeneities (only mineral components or C1) in individual droplet replicas were obviously observed from micro-PIXE elemental images.

Effect of Brine Mineral Water on TMA-Induced Contact Hypersensitivity Reaction in the Mouse Model (TMA로 유도된 접촉성 과민 반응 마우스 질환모델에서 해양성 광천수 도포시의 치료효과)

  • Kim, Jae-Jin;Kim, Wan-Jae;Sim, Jae-Man;Choi, Seon-Kang;Kwon, Soon-Sung;Kim, Jung-Duk;Lee, Kwang-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.4
    • /
    • pp.440-445
    • /
    • 2010
  • Effect of brine mineral water(BMW) on contact hypersensitivity reaction(CHR) was estimated using trimellitic anhydride (TMA) induced CHR in the mouse. BMW exhibited potent inhibitory activity on TMA induced CHR. BMW treatment suppressed the ear swelling, and attenuated hyper-activated lymph nodes stimulated by TMA challenge, thereby reduced their weight. The immunological index was analyzed after BMW administration in CHR. The level of serum IgE was significantly down regulated after BMW treatment. Furthermore, BMW showed inhibitory property of cytokine production. BMW treatment suppressed not only Th2 type cytokine, IL-4 but also pro-inflammatory cytokines such as TNF-${\alpha}$ and IL-6. From the histological analysis, the inflammatory context appeared by atopic dermatitis lesion after challenging with TMA are diminished by BMW treatment. Our results suggest that BMW may attenuate the development of CHR, and can be available for functional ingredient.

The Lightning Impulse Properties and Breakdown Voltage of Natural Ester Fluids Near the Pour Point

  • Choi, Sun-Ho;Huh, Chang-Su
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.524-529
    • /
    • 2013
  • Recently, researchers have become interested in natural ester fluids, as they are an environmentally friendly alternative to mineral oils. Natural ester fluids are a natural resource made from plants; they have higher biodegradability, flash, and fire points, and a greater permittivity compared to conventional mineral oils. However, natural ester fluids also have a higher pour point, viscosity, and water content. These characteristics can hamper circulation and impair the electrical properties of an oil-filled transformer. A large amount of data has been accumulated over the years in regards to mineral insulating oil involving dielectric breakdown voltage and lightning impulse tests. However, natural ester fluids have not had their electrical properties sufficiently characterized. In this paper, we present an investigation into the characteristics of the electrical discharge development in natural ester fluids and in an oil-filled transformer near the pour points. The experiment results show that the electrical properties decreased according to a decrease in the ambient temperature and freezing time. It was found that the pour point and water content of natural ester fluids have a significant effect on the electrical properties.

Consequences and Remediation of Climate change with Focus on Clean Water and Sanitation in India

  • Khan, Mohammad Danish;Lee, Seungmin;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.1
    • /
    • pp.65-75
    • /
    • 2018
  • The emission of greenhouse gases mainly carbon dioxide and methane is the result of rapid industrialization to meet the demands of ever-growing population. This has resulted in an increase of global temperature which in turn is responsible for severe environmental, social, ecological and economic losses, commonly known as to as 'climate change'. This study attempts to highlight the impacts of climate change mainly focussing on water contamination, sanitation and open defecation in India. The requirement for the instantaneous employment of environment friendly technologies along with improved sanitary system has been discussed. Various other issues which are also linked to climate change that need further management like managing water resources, deterioration in human health, economic losses, modification and successful implementation of policies have been pointed out. Furthermore, stress has been made for the urgent adaptation and rethinking for making strategies along with the involvement of women in order to cop up challenges offered by climate change.

An Experimental Study on the Engineering Properties of Ultra-High Strength Concrete according to Types of Mineral Admixtures (광물질 혼화재 종류에 따른 초고강도 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Joung Hyun-Woong;Kang Hoon;Lee Sang-Soo;Song Ha-Young;Kim Eul-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.29-32
    • /
    • 2005
  • In this study, the experiment was carried out to investigate and analyze the strenth properties and flowability of ultra-high strength concrete accroding to types of mineral admixtures. The main experimental variables were water/binder ratio 25.0, 27.5 and 30.0$\%$, water content 155, 160, 165, and 170kg/$m^{3}$ and mineral admixtures such as fly ash, silica fume and meta kaolin. According to the test results, the principle conclusions are summarized as follows. 1) In case of using admixtures, superplasticizer amount need more than plain concrete. 2) According to kinds of admixtures, the viscosity of concrete show much difference. 3) The compressive strength of concrete that use admixtures becomes low in early-age strength, but appeared by higher than plain concrete in long-term strength. 4) Meta kaolin is excellent in side but has viscosity enlargement efficiency a little. But, problem estimates that is not to make design strength 600 and 700kgf/$cm^{2}$ if use mixing condition with water-binder ratio properly.

  • PDF