• Title/Summary/Keyword: Mineral Elements

Search Result 569, Processing Time 0.022 seconds

Utilization of Wood by-product and Development of Horticultural Growing Media (임산부산물을 이용한 원예용 혼합상토 개발)

  • Jung, Ji Young;Lim, Ki-Byung;Kim, Ji Su;Park, Han Min;Yang, Jae-Kyung
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.435-442
    • /
    • 2015
  • The main objective of this work was to identify and evaluate possible substrate alternatives or amendments to peat moss. This study involves the physical and chemical characterization and growth test of wood sawdust and wood fiber in order to evaluate their use as components of horticultural media. The carbohydrate content, C/N ratio, pH, phenolic compound, total porosity and water holding capacity were 58.9%, 425.1, 4.8, 181.8 ($mg{\cdot}g^{-1}$), 82.5% and 47.1% in wood sawdust and 41.1%, 240.8, 5.9, 29.8 ($mg{\cdot}g^{-1}$), 90.6% and 56.2% in wood fiber, respectively. Wood sawdust (K, $998.0mg{\cdot}100g^{-1}$ ; Ca, $1196.0mg{\cdot}100g^{-1}$; Mg, $105.6mg{\cdot}100g^{-1}$) and wood fiber (K, $1250.1mg{\cdot}100g^{-1}$; Ca, $1982.6mg{\cdot}100g^{-1}$; Mg, $173.1mg{\cdot}100g^{-1}$) showed adequate mineral elements properties compared to peat moss (K, $0.02mg{\cdot}100g^{-1}$; Ca, $0.57mg{\cdot}100g^{-1}$; Mg, $0.13mg{\cdot}100g^{-1}$) for their use as growing media. The mixtures of the horticultural media were prepared using different substrate as wood sawdust and wood fiber to grow Chinese cabbage (Brassica campestris L.) in a greenhouse. The seed germination, leaf area and stem height were 75%, $0.50cm^2$ and 2.8 cm in PS substrate (containing 30% peat moss, 10% perlite and 60% wood sawdust) and 95%, $0.65cm^2$ and 3.3 cm in PF substrate (containing 30% peat moss, 10% perlite and 60% wood fiber), respectively. The seed germination and stem height of the PF substrate (containing 30% peat moss, 10% perlite and 60% wood fiber) was higher than those in peat moss (control). Utilization of wood by-product can be considered as an alternative media component to substitute the widely using expensive peat moss.

Geochemical Occurrence of Uranium and Radon-222 in Groundwater at Test Borehole Site in the Daejeon area (대전지역 시험용 시추공 지하수내 우라늄 및 라돈-222의 지화학적 산출특성)

  • Jeong, Chan Ho;Ryu, Kun Seok;Kim, Moon Su;Kim, Tae Sung;Han, Jin Suk;Jo, Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.23 no.2
    • /
    • pp.171-186
    • /
    • 2013
  • A drilling project was undertaken to characterize the geochemical relationship and the occurrence of radioactive materials at a test site among public-use groundwaters previously known to have high occurrence of uranium and radon-222 in the Daejeon area. A borehole (121 m deep) was drilled and core rocks mainly consist of two-mica granite, and associated with pegmatite and dykes of intermediate composition. The groundwater samples collected at six different depths in the borehole by a double-packed system showed the pH values ranging from neutral to alkaline (7.10-9.3), and electrical conductivity ranging from 263 to 443 ${\mu}S/cm$. The chemical composition of the borehole groundwaters was of the $Ca-HCO_3(SO_4+Cl)$ type. The uranium and Rn-222 contents in the groundwater were 109-1,020 ppb and 9,190-32,800 pCi/L, respectively. These levels exceed the regulation guidelines of US EPA. The zone of the highest groundwater uranium content occurred at depths of 45 to 55m. The groundwater chemistry in this zone (alkaline, oxidated, and high in bicarbonate) is favorable for the dissolution of uranium into groundwater. The dominant uranium complex in groundwater is likely to be $(UO_2CO_3)^0$ or $(UO_2HCO_3)^+$. Radon-222 content in groundwater shows an increasing trend with depth. The uranium and thorium contents in the core were 0.372-47.42 ppm and 0.388-11.22 ppm, respectively. These levels are higher values than those previously been reported in Korea. Microscopic observations and electron microprobe analysis(EPMA) revealed that the minerals containing U and Th are monazite, apatite, epidote, and feldspar. U and Th in these minerals are likely to substitute for major elements in crystal lattice.

EFFECT OF 10% CARBAMIDE PEROXIDE ON DENTIN (상아질에 대한 10% Carbamide peroxide가 미치는 영향)

  • Seo, Sang-Woo;Kown, Yong-Hoon;Kim, Hyun-Jung;Nam, Soon-Hyeun;Kim, Kyo-Han;Kim, Young-Jin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.3
    • /
    • pp.423-430
    • /
    • 2003
  • The teeth bleaching with bleaching agent is widely used at recent times. Until yet the exact mechanism of the bleaching agent isn't known but it is thought that is by the complex reduction-oxidation reaction of the decomposed free radical from bleaching agent through various ways. In other words, it is supposed that the teeth are whitened by agent's changing chemical structures of stain-causing materials. The purpose of this study is to exam the change of the dentinal character by bleaching agent and to evaluate the safety of this agent. For this study, after applying 10% carbamide peroxide to enamel of human premolar for 6 hours a day for 2 weeks we examined changes of surface morphology, microhardness, composition and contents of minirals in human dentin using SEM, microhardness tester, FT-Raman spectrometer and EPMA and got following results. There was no significant difference in surface morphologic change when we examined the effect of 10% carbamide peroxide which penetrated into dentin after applied on enamel surface comparing with result from specimen in distilled water No change was shown on the surface of peritubular and intertubular dentin within the nanometeric range. The microhardness between bleached teeth and teeth stored in distilled water showed no statistically significant difference FT-Raman spectra of dentin exhibited no change of the component in human dentin. Only the least change in peaks of organic and inorganic materials were detected in Raman intencity. The total content of mineral elements in dentin with no treatment, stored only in distilled water and stored in distilled water after bleaching were $98.73{\pm}1.89,\;98.56{\pm}2.11\;and\;97.47{\pm}2.51$ respectively. Also they showed no statistically significant difference. From above results, the effect of 10% carbamide peroxide bleaching on structure of dentin is very low and the results may confirm the safety of this bleaching agent.

  • PDF

Occurrence of Natural Radioactive Materials in Borehole Groundwater and Rock Core in the Icheon Area (이천지역 시추공 지하수와 시추코어내 자연방사성물질 산출 특성)

  • Jeong, Chan-Ho;Kim, Dong-Wook;Kim, Moon-Su;Lee, Young-Joon;Kim, Tae-Seung;Han, Jin-Seok;Jo, Byung-Uk
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.95-111
    • /
    • 2012
  • This study investigated the relationship between the geochemical environment and the occurrence of natural radioactive materials (uranium and Rn-222) in borehole groundwater at an Icheon site. The drill core recovered from the study site consists mainly of biotite granite with basic dykes. The groundwater samples were collected at four different depths in the borehole using the double-packed system. The pH range of the groundwater was 6.5~8.6, and the chemical type was Ca-$HCO_3$. The ranges of uranium and Rn-222 concentrations in the groundwater were 8.81~1,101 ppb and 5,990~11,970 pCi/L, respectively, and concentrations varied greatly with depth and collection time. The ranges of uranium and thorium contents in drill core were 0.53~18.3 ppm and 6.66~17.5 ppm, respectively. Microscope observations and electron microprobe analyses revealed the presence of U and Th as substituted elements for major composition of monazite, ilmenite, and apatite within K-feldspar and biotite. Although the concentration of uranium and thorium in the drill core was not high, the groundwater contained a high level of natural radioactive materials. This finding indicates that physical factors, such as the degree of fracturing of an aquifer and the groundwater flow rate, have a greater influence on the dissolution of radioactive materials than does the geochemical condition of the groundwater and rock. The origin of Rn-222 can be determined indirectly, using an interrelationship diagram of noble gas isotopes ($^3He/^4He$ and $^4He/^{20}Ne$).

Concentration of Radioactive Materials for the Phanerozoic Plutonic Rocks in Korea and Its Implication (국내 현생 심성암류의 방사성 물질의 농도 및 의미)

  • Kim, Sung Won
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.565-583
    • /
    • 2020
  • In recent years, various social issues related to the natural radioactive elements detected in household goods and building materials are addressed, and should be solved promptly. In Korea, for more than 20 years, the Ministry of Environment has investigated the natural radioactive materials such as heavy metals, uranium, and radon in soil or groundwater. The origins of natural radioactive materials in them may have a close correlation with the geological factors including classification of rocks, petrogenetic origins, and deformation characteristics, but the exact geological correlations are not clarified because of the absence of the government policy preserved in the basement rocks, soils as well as groundwater in fault-related reservoirs. This study aims to perform a research on the correlation between the petrogeneses of the Phanerozoic plutonic rocks and natural radioactive concentrations in rocks (radon, uranium, thorium, potassium etc.) in Korea. Among the Phanerozoic plutonic rocks, alkaline plutonic rocks (syenite, monzonite and monzodiorite and alkali granite) show high U and Th concentrations by high solubilities of U, Th, Zr, REE, and Nb until the most extreme stages of magmatic fractionation (viz. crystal fractionation) due to high magma temperature and high alkalinity tendency. The highly fractionated high-K calalkaline and peraluminous granitic rocks (leucogranite, two-mica granite and leucocratic pegmatite are also U and Th concentrations compared with other less or medium fractionated granitic rocks (diorite, granodiorite and granite). The alkaline plutonic rocks are associated with intracontinental rifting and extensional environment after crustal thickening by collisional and subductional processes. In contrast, the dominant calc-alkaline granitic rocks in Korea are related to the arc environment of the subduction zone. In summary, the trends of the U, Th and K concentration from the Phanerozoic plutonic rocks in Korea are closely linked to the petrogenesis of the rocks in tectonic environment. The preliminary data for gamma-spectrometric mesurments of natural radionuclide contents (226Ra, 232Th and 40K) in the Phanerozoic plutonic rocks show high values in the alkaline and highly fractionated granitic rocks.

Mineral chemistry and texture of the zoned amphiboles of the amphibolites in the Hwanggangri area, the northeastern region of Ogcheon metamorphic belt, Korea (옥천변성대 북동부 황강리 지역내 앰피볼라이트에 나타나는 대상 각섬석의 광물화학 및 조직)

  • 유영복;권용완;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.99-118
    • /
    • 2000
  • The variation of Na(A), K, Na(M4), A l O and Al(VI)+Fe3++Ti+Cr in the zonal amphiboles from the amphibolites of the Hwanggangri area indicates that the tschermakite-, edenite- and glaucophane substitutions are higher in the rim than in the core, in which actinolite changes to hornblende with going outward from core to rim. The contents of substitutional elements of hornblende~ of three samples@l29-2, M76-2, M78), which include diopside and greenish brown hornblende and are thought to represent the highest metamorphic grade, are lower than those of rim homblendes of the lower metamorphic grade and are higher than those of core actinolite that they conform to the middle domain in those of the whole amphiboles. Considerations about the origin of zonal amphiboles are as follows. Firstly, two samples(R102-1, R210-9) have the same amphibole composition like core is actinolitic hornblende, and rim is magnesian hastingsite although plagioclases such as albite(R102-1) and labradorite (R210-9) show the wide compositional difference. It is impossible to produce both albite and labradorite by one metamorphic event. Judging from this wide compositional difference, the existence of zonal amphiboles does not indicate the miscibility gap but is thought to be the result of the polymetamorphism. Secondly, the crystallographically sharp and gradational interfaces between actinolite and hornblende fonned in the amphibolites rgardless of the distance from the granite. In case of the samples(R210-9, M128, M130) having the sharp interface between two amphiboles, the plagioclase show the compositions produced at the low grade and the medium grade. Because such variable compositions of plagioclase indicates the overprinting of metamorphism of higher metamorphic grade than that of the formation of miscibility gap, it implies that zonal amphiboles were formed by polymetarnorphism. In case of the gradational interface between two amphiboles, this texture is also thought to be the effect of polymetamorphism from the fact that this texture mainly occur near the granite and from the consideration of the metamporphic grade. The relationship between the compositional variations of the amphiboles and the pressure types of metamorphism suggests that actinolitic core is considered to be grown by the metamorphism of medium pressure, while hornblende rim is shown to have genetic relations with the metamorphism of low pressure type.

  • PDF

Interpretation on Making Techniques of Some Ancient Ceramic Artifacts from Midwestern Korean Peninsula: Preliminary Study (한반도 중서부 출토 일부 고대 세라믹 유물의 제작기술 해석: 예비 연구)

  • Lee, Chan Hee;Jin, Hong Ju;Choi, Ji Soo;Na, Geon Ju
    • Journal of Conservation Science
    • /
    • v.32 no.2
    • /
    • pp.273-291
    • /
    • 2016
  • Some ceramic artifacts representing time-wise from comb pattern pottery in the Neolithic Age to white porcelain in Joseon Dynasty were selected from 7 sites in the north and south area of Charyeong Mountain Range in order to making techniques interpretation and development process of ancient ceramics through physicochemical and mineralogical quantitative analysis. Studied pottery samples in the Prehistoric times showed trace of ring piling in soft-type, and pottery in the Three Kingdoms Period had both soft and hard-type but kettle-ware and storage-ware were made with ring piling, but table-ware was made by wheel spinning. Different from pottery after the Three Kingdom Period when refinement of source clay was high, pottery in the Neolithic Age and in the Bronze Age exhibited highly mineral content in sandy source clay, which showed a lot of larger temper than source clay. Groundmass of celadon and white porcelain almost did not reveal primary minerals but had high content of minerals by high temperature firing. Ceramic samples showed some different in major and minor elements according to sites irrespective of times. Geochemical behaviors are very similar indicating similar basic characteristics of source clay. However, loss-on-ignition showed 0.01 to 12.59wt.% range with a large deviation but it rapidly decreased moving from the Prehistoric times to the Three Kingdom Period. They have correlation with the weight loss due to firings, according to burning degree of source clay and detection of high temperature minerals, estimated firing temperatures are classified into 5 groups. Pottery in the Neolithic Age and in the Bronze Age belongs from 750 to $850^{\circ}C$ group; pottery in the Three Kingdom Period are variously found in 750 to $1,100^{\circ}C$ range of firing temperature; and it is believed celadon and white porcelain were baked in high temperature of 1,150 to $1,250^{\circ}C$. It seems difference between refinement of source clay and firing temperature based on production times resulted from change in raw material supply and firing method pursuant to development of production skill. However, there was difference in production methods even at the same period and it is thought that they were utilized according to use purpose and needs instead of evolved development simply to one direction.

Relative Magma Formation Temperatures of the Phanerozoic Granitoids in South Korea Estimated by Zircon Saturated Temperature (저콘 포화온도로 추정한 남한 현생이언 화강암의 상대적인 마그마 생성온도)

  • Sangong Hee;Kwon Sung-Tack;Cho Deung-Ryong;Jwa Yong-Joo
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.2 s.40
    • /
    • pp.83-92
    • /
    • 2005
  • It has recently been proposed that granites can be divided into hot and cold ones by absence and presence of inherited zircon, respectively, which is closely related to zircon saturation temperature. The Phanerozoic granites in South Korea are divided into high- and low-Zr groups in a $SiO_2-Zr$ diagram, which appears to be related to their intrusive age. Most Triassic-Jurassic granites belong to low-Zr group, whereas most Cretaceous-Early Tertiary granites belong to the high-Zr group with the exception of geographically distinct Masan and Jinhae granites that belong low-Zr group. Calculated zircon saturation temperatures using major elements and Zr contents indicate that the Cretaceous-Early Tertiary granites $(608-834^{\circ}C,\;average\; 782\pm31^{\circ}C)$ except for the Masan and Jinhae granites $(average\;759\pm16^{\circ}C)$ show higher temperature than the Triassic-Jurassic granites $(642-824^{\circ}C,\;average\;756\pm31^{\circ}C)$. U-Pb zircon isotope data of the Triassic-Jurassic granites reported so far define discordia in a concordia diagram, which indicates presence of inherited zircon and agrees with their low zircon saturation temperatures. So the Triassic-Jurassic granites appear to belong to cold granite. On the other hand, presence or absence of inherited zircon has not been known for the Cretaceous-Early Tertiary granites with relatively high zircon saturation temperature, so that their classification into hot or cold granite awaits further study. Nevertheless, the Creatceous-Early Tertiary granites may have formed at higher temperature than the Triassic-Jurassic granites, since zircon saturation temperature reflects formation temperature of magma to a certain degree.

Studies on the Processing of Powdered Katsuobushi and Its Flavor Constituents 1. Processing Conditions of Powdered Katsuobushi and Its Taste Compounds (분말가쓰오부시의 제조 및 풍미성분에 관한 연구 1. 분미가쓰오부시의 가공조건 및 정미성분)

  • OH Kwang-Soo;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.1
    • /
    • pp.21-29
    • /
    • 1988
  • This study was carried out to develop the powdered Katsuobushi (a kind of boiled, smoked, and dried fish product which is used for seasoning soup as it is.) using skipjack as a natural flavoring substance. The processing conditions of the powdered Katsuobushi and the changes of taste compounds during processing of the products were examined. In preparation of the powdered Katsuobushl, frozen skipjack was thawed, beheaded, gutted, filleted and then sliced to 1cm of thickness. The silted meats were boiled in skipjack extract for 20 minutes, and then it was smoked for, 3 times to $10\~12\%$ moisture content at $80^{\circ}C$ for 8 hours. The smoked - dried meats were followed to be 50 mesh of particle size. The effect of slicing and boiling in skipjack meat extract on enhancing flavor and on preventing lipid oxidation of product during processing were observed. The moisture content and crude lipid content of the powdered Katsuobushi was in the range of 11 to $12\%$ and 4.3 to $4.8\%$, respectively. The taste compounds of the product were nucleotides and their related compounds, 1135.8mg/100g ; free amino acid and related compounds, 2210.2mg/100g ; non-volatile organic acids, 1148.0mg/100g ; and total creatinine. 592.1mg/100g on dry basis, and small amount of betaine and TMAO. The major elements of mineral in the product were found to be K, Mg, Na, and Ca. The content of IMP was 542.0mg/100g, and major free amino acids were found to be histidine, anserine, taurine, carnosine and alanine of which occupied to $83.6\%$ of total free amino acids. In non -volatile organic acids, major ones were lactic acid, succinic acid, pyroglutamic acid and $\alpha-ketoglutaric$ acid. From the results of the chemical experiments and sensory evaluation, we may conclude that the flavor of the product from present experiment is more desirable than that of conventional products although the processing time used were much shortened than that of conventional method, and it can be commercialized as a seasoning powder.

  • PDF

Chemical Composition and Physiological Activity of Opuntia ficus-indica depending on Different Cultivation Regions (재배지역별 보검선인장 줄기의 영양성분 및 생리활성 평가)

  • Lee, Sang Hoon;Jeong, Yun Sook;Song, Jin;Hwang, Kyung-A;Noh, Geon Min;Hwang, In Guk
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.4
    • /
    • pp.521-528
    • /
    • 2016
  • This study was conducted to investigate changes in the proximate composition, antioxidant activities, and ${\alpha}$-glucosidase inhibitory activity of Opuntia ficus-indica (OFI) cladodes cultivated in Jeju (JJ1, JJ2, JJ3) and Jeonnam (JN1, JN2). The difference in the proximate composition (crude protein, lipid and ash content) of OFI between the two regions was not significant. Ca, Mg and Na were the major mineral components of OFI. The ascorbic acid content of OFI ranged from 57.87 to 143.72 mg/100 g. A 70% ethanol extract was used to investigate the antioxidant content and activity as well as the ${\alpha}$-glucosidase inhibitory activity. The total polyphenol and flavonoid contents of OFI were 38.69~55.29 and 3.33~4.03 mg/g, respectively. The antioxidant activities based on the DPPH and ABTS free radical scavenging assays were 45.19~61.52% and 39.15~51.96%, respectively, at a concentration of 1 mg/mL. The inhibitory activity of OFI extracts against rat intestinal ${\alpha}$-glucosidase was 29.72~45.73% at 1 mg/mL concentration, and JN1 showed the highest ${\alpha}$-glucosidase inhibitory activity. This information could be very useful for authentication of Opuntia species with the highest potential as sources of nutritional and therapeutic elements.