• Title/Summary/Keyword: Mineral Crystal Structure

Search Result 65, Processing Time 0.021 seconds

Physico-Chemical Properties of Natural Zeolite -On the Zeolite from Kampo Area- (천연 제올라이트의 물리화학적 성질 -경북 감포산 제올라이트에 관하여-)

  • 조승래;이홍기;이주성;심미자;김상욱
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.6
    • /
    • pp.334-340
    • /
    • 1993
  • The physico-chemical properties and characteristics after thermal treatment of natural zeolite from Kampo area were studied. The physico-chemical properties of natural zeolite were studied by investigating chemical composition, x-ray diffraction pattern(XRD), scanning electronic microscope(SEM), infrared spec-tra(IR), thermal analysis(TA), and cation exchange capacity(C.E.C.), and the characteristics of natural zeo-lite after thermal treatment from $400^{\circ}C$ to $900^{\circ}C$ were compared with the natural zeolite. This study showed that clinoptilolite was the predominant costituent in natural zeolite, and the natural zeolite contained a little amount of quartz and feldspar as impurities. Zeolite mineral was seen to develop slowly by the natural alternation of volcanic ash considering the almost amorphous crystal structure. The more temperature of ther-mal treatment increased, the more adsorption capacity decreased, considering the fact that the hydroxy peak diminished on infrared spectra, and that cation exchange capacity also decreased distinctly.

  • PDF

Preparation of Graphene-Palladium Composite by Aerosol Process and It's Characterization for Glucose Biosensor (에어로졸 공정에 의한 그래핀-팔라듐 복합체 제조 및 글루코스 바이오센서 특성평가)

  • Kim, Sun Kyung;Jang, Hee Dong;Chang, Hankwon;Choi, Jeong-Woo
    • Particle and aerosol research
    • /
    • v.10 no.2
    • /
    • pp.53-59
    • /
    • 2014
  • Palladium (Pd) nanoparticles attached graphene (GR) composite was synthesized for an enhanced glucose biosensor. Aerosol spray pyrolysis (ASP) was employed to synthesize the GR-Pd composite using a colloidal mixture of graphene oxide (GO) and palladium chloride ($PdCl_2$) precursor. The effects of the weight ratio of the Pd/GR on the particle properties including the morphology and crystal structure were investigated. The morphology of GR-Pd composites was generally the shape of a crumpled paper ball, and the average composite size was about $1{\mu}m$. Pd nanoparticles less than 20 nm in diameter were deposited on GR sheets and the Pd nanoparticles showed clear crystallinity. The characteristic of the glucose biosensor fabricated with the as-prepared GR-Pd composite was tested through cyclic voltammetry measurements. The biosensor exhibited a high current flow as well as clear redox peaks, which resulted in a superior ability of the catalyst in terms of an electrochemical reaction. The highest sensitivity obtained from the amperometric response of the glucose biosensor was $14.4{\mu}A/mM{\cdot}cm^2$.

Characteristics of Zeolites (Zeolite의 특성)

  • Im, Goeng
    • The Journal of Natural Sciences
    • /
    • v.6 no.1
    • /
    • pp.103-108
    • /
    • 1993
  • Zeolites were discovered as a natural mineral more than two hundred ago. In the beginning, the mineral was used as ion-exchange material and adsorbent. After the end of World War II , however, a variety of zeolites have become available in large amounts because of the establishment of low temperature synthesis and the discobery of natural zeolite deposits of sedimentary origin. Various uses of xeolite were developed utilizing the unique crystal strucrure and function of these minerals. In connection with this development remakable progress has also been made in basic stuides on the related geology and mineralogy, crystallization from sols and gels, structure, ion exchange, adsorption and cataiysis. As a result, zeolites, which had been known only as mineral specimens displayed in museums. established a firm position among the high-technology masterials with excellent functional capabilities.

  • PDF

Application of Scanning Electron Microscopy (SEM) for Biotically Induced Microstructure Observation in Sedimentary Sample of Natural Condition (주사전자현미경 분석을 활용한 자연환경 퇴적시료의 생물기원구조 관찰)

  • Park, Hanbeom;Kim, Jinwook
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.165-173
    • /
    • 2020
  • The activity of living microorganism directly or indirectly affects to the biomineralization in sediments and rocks that display the unique biotic structure. Minerals in the biotic structures showed unique properties and bypass the thermodynamic and kinetic barriers. Therefore, investigations on the biotically induced microstructure is essential to identify the new mineral formation mechanism by analyzing crystal structures and morphology at a nano-scale. The significant implication as well as advantages of using scanning electron microscopy to characterize the biotic structures were discussed in this paper for the examples of hydrothermal vent area microbial mat and deep-sea ferromanganese crust sample.

Fine-scale Mineral Association and Crystal Structure Refinement of Spotted Cordierite from Northern Ogcheon Metamorphic Belt (북부 옥천변성대에서 산출되는 반점상 근청석의 미시적 공생관계 및 결정구조 해석)

  • 노진환;최진범;김건영
    • Journal of the Mineralogical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.55-65
    • /
    • 1999
  • Spotted cordierite occurs as the result of intrusion of Wolaksan Granite of Cretaceous age in the northern part of the Ogcheon Metamorphic Belt, forming a contact metamorphic zoning in accordance with the distance from the granite body: a cordierite-muscovite-biotite-quartz assemblage and the higher-temperature cordierite-biotite-quartz-(cummingtonite). These quartz-ubiquitous mineral assemblages identified in the cordierite spot seem to reflect Al-deficient condition of the protolith. TEM observations of textural relations between the cordierite and mica within the cordierite spot clearly reflect that cordierite was formed at the expense of micaceous matrix. A structure refinement of the poikiloblastic cordierite was performed by the Rietveld refinement method. Unit cell of the cordierite was determined to be as follows : lower-temperature type: a=17.1480(9)${\AA}$, b=9.7743(6)${\AA}$, c=9.3184(5)${\AA}$, V=1561.9(4)${\AA}$3, higher-temperature type: a=17.136(2)${\AA}$, b=9.751(1)${\AA}$, c=9.322(1)${\AA}$, V=1557.7(4)${\AA}$3. They show a remarkable difference in the unit cell dimension. The refinement results indicate that structural sites of lower-temperature cordierite are wholly occupied by appropriating ions. Compared to this, tetrahedral sites of the higher-temperature type exhibit an order/disorder ranging about 5-8% as the result of substitution between Si4+ and Al3+, except for T26 site occupied wholly by Al3+. These structural differences seem to be related to the formation temperatures of both cordierite types.

  • PDF

Effect of chemical concentrations on strength and crystal size of biocemented sand

  • Choi, Sun-Gyu;Chu, Jian;Kwon, Tae-Hyuk
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.465-473
    • /
    • 2019
  • Biocementation due to the microbially induced calcium carbonate precipitation (MICP) process is a potential technique that can be used for soil improvement. However, the effect of biocementation may be affected by many factors, including nutrient concentration, bacterial strains, injection strategy, temperature, pH, and soil type. This study investigates mainly the effect of chemical concentration on the formation of calcium carbonate (e.g., quantity, size, and crystalline structure) and unconfined compressive strength (UCS) using different treatment time and chemical concentration in the biotreatment. Two chemical concentrations (0.5 and 1.0 M) and three different treatment times (2, 4, and 8 cycles) were studied. The effect of chemical concentrations on the treatment was also examined by making the total amount of chemicals injected to be the same, but using different times of treatment and chemical concentrations (8 cycles for 0.50 M and 4 cycles for 1.00 M). The UCS and CCC were measured and scanning electron microscopy (SEM) analysis was carried out. The SEM images revealed that the sizes of calcium carbonate crystals increased with an increase in chemical concentrations. The UCS values resulting from the treatments using low concentration were slightly greater than those from the treatments using high concentration, given the CCC to be more or less the same. This trend can be attributed to the size of the precipitated crystals, in which the cementation efficiency increases as the crystal size decreases, for a given CCC. Furthermore, in the high concentration treatment, two mineral types of calcium carbonate were precipitated, namely, calcite and amorphous calcium carbonate (ACC). As the crystal shape and morphology of ACC differ from those of calcite, the bonding provided by ACC can be weaker than that provided by calcite. As a result, the conditions of calcium carbonate were affected by test key factors and eventually, contributed to the UCS values.

Crystal Chemistry and Paragenesis of Aluminum Sulphates from Mudstones of the Yeonil Group (I): basaluminite, hydrbasaluminite, and metabasaluminite (연일층군 이암에서 산출되는 알루미늄 황산염 광물의 결정화학 및 생성 (I): 배사알루미나팅, 하이드로베사알루미나이트 및 메타배사알루미나이트)

  • 노진환
    • Journal of the Mineralogical Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.1-12
    • /
    • 1998
  • In Pohang area, basaluminite accompanying a little amounts of hydrobasalumnite, super-genetically occurs as whitish cryptocrystalline (2-4 $\mu\textrm{m}$) clay-like aggregates in the vicinity of altered carbonate concretions embedded within mudstones of the Tertiary Yeonil Group. A hydrobasaluminite changed readily into a basaluminite at room temperature in air, and, in turn, into a metabasaluminite when heating to 150$^{\circ}$~30$0^{\circ}C$. For the basaluminite, a monoclinic unit-cellparameters (a=14.845$\AA$, b=10.006$\AA$, c=11.082$\AA$, $\beta$=122.15$^{\circ}$) were calculated by X-ray powder diffraction data. Its basal reflections (001 and 002) are XRD analyses strongly indicate that the aluminum sulphate mineral has a layer structure and, at least, three types of water, i.e., (1) interlayer water (9.0 wt %), (2) crystal water (8.0 wt %), and (3) structural water (19.0 wt %). may present in its lattice. Based on TG-DTG data combined with EDS and IR analyses, a new chemical formula of Al5SO4(OH)134H2O was given to the basaluminite. Field occurrence and stable isotope data ($\delta$18O, $\delta$D, $\delta$34S) for the basaluminite seem to reflect that it was formed by the leached meteoric solution from surrounding mudstones during or after uplifting. An interaction of the acid solution with carbonate concretion and the resultant local neutralization of the fluid rich in Al3+ and SO42- are major controls on the basaluminite formation.

  • PDF

Mineralogical Properties and Paragenesis of H-smectite (H-스멕타이트의 광물학적 특성과 생성관계)

  • Noh, Jin-Hwan;Hong, Jin-Sung
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.377-393
    • /
    • 2010
  • Pumiceous tuffs occurring in the Beomgockri Group are examined applied-mineralogical characteristics and their controling factors to evaluate their potentials as the adsorption-functional mineral resources. The pumiceous tuffs are diagenetically altered to low-grade zeolitcs and bentonites in the Janggi area. Compositional specialty due to the presence of pumice fragments induces the altered tuffs to exhibit the characteristic adsorption property combined with cation exchange capacity, specific surface area, and acidic pH. Unusual lower pH in the adsorption-functional mineral substances is turned out to be originated from the presence of H-smectite having $H^+$ in the interlayer site of the sheet structure. On account of disordered crystallinity resulting from the exchanged $H^+$ in the interlayer site, the smectite commonly forms crenulated edges in the planar crystal form and exhibits characteristic X-ray diffraction patterns showing comparatively lower intensities of basal spacings including (001) peak than conventional Ca-smectite. Based on the interpretation of paragenetic relations and precursor of the H-smectite, a genetic model of the peculiar clay mineral was proposed. The smectite formation may be facilitated resulting from the precipitation of opal-CT at decreasing pH condition caused by the release of H+ during diagenetic alteration of pumice fragments. Because of the acidic smectite, the low-grade mineral resources from the Beomgockri Group may be applicable to the adsorption industry as the raw materials of acid clays and bed-soil.

Microfabrics of omphacite and garnet in eclogite from the Lanterman Range, northern Victoria Land, Antarctica

  • Kim, Daeyeong;Kim, Taehwan;Lee, Jeongmin;Kim, Yoonsup;Kim, Hyeoncheol;Lee, Jong Ik
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.939-953
    • /
    • 2018
  • We examined the microfabrics of omphacite and garnet in foliated eclogite to determine the influence of the layered structure on seismic observations in subduction zone. The analyzed eclogite, from the Lanterman Range, northern Victoria Land, Antarctica, is characterized by layering in which the modal abundances of garnet and omphacite vary. For garnet, the low aspect ratios, similar angular distribution of long axes relative to the foliation in both layers, uniform grain size distribution, near-random crystallographic preferred orientations (CPOs), and misorientation angle distributions are indicative of passive behavior during deformation. In contrast, omphacite shows relatively high aspect ratios, a low angle between the long axes of crystals and the foliation, a wide grain-size distribution, and distinctive CPOs, suggesting dislocation creep as the main deformation mechanism. The results of fabric analyses are consistent with strain localization into omphacite or omphacite-rich layers rather than garnet or garnet-rich layers. The single-crystal seismic anisotropy of garnet is very weak ($AV_P=0.2%$, $AV_S=0.5-0.6%$), whereas that of omphacite is much stronger ($AV_P=3.7-5.9%$ and $AV_S=2.9-3.8%$). Seismic anisotropy of the omphacite-rich layers shows an increase of 329% for $AV_P$ and 146% for $AV_S$ relative to the garnet-rich layers. Our results demonstrate the importance of the layered structure in strain localization and in the development of the seismic anisotropies of subducting oceanic crust.

A Study on Physical Properties and Catalytic Combustion of Methane of Sr Hexaaluminate Prepared using 1-butanol and Ethylene Glycol (1-butanol과 ethylene glycol을 이용하여 합성한 Sr hexaaluminate의 물리적 특성 및 메탄 연소 반응에 관한 연구)

  • Shon, Jung Min;Woo, Seong Ihl
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.209-214
    • /
    • 2007
  • Sr hexaaluminate($Sr_{1-x}La_xMnAl_{11}O_{19-\alpha}$) were prepared by sol-gel method of metal alkoxide with 1-butanol or ethylene glycol as a solvent. The physical properties of prepared hexaaluminates were examined by TG/DTA, XRD and $N_2$ adsorption. When ethylene glycol was used as a solvent, the decomposition reaction and dehydroxylation reaction was observed above $400^{\circ}C$ and the temperature of the formation of a crystal structure of hexaaluminate was also increased resulting in small specific surface area and low catalytic activity of methane compared to Sr-hexaaluminate with 1-butanol.