Browse > Article
http://dx.doi.org/10.22807/KJMP.2020.33.3.165

Application of Scanning Electron Microscopy (SEM) for Biotically Induced Microstructure Observation in Sedimentary Sample of Natural Condition  

Park, Hanbeom (Department of Earth System Sciences, Yonsei University)
Kim, Jinwook (Department of Earth System Sciences, Yonsei University)
Publication Information
Korean Journal of Mineralogy and Petrology / v.33, no.3, 2020 , pp. 165-173 More about this Journal
Abstract
The activity of living microorganism directly or indirectly affects to the biomineralization in sediments and rocks that display the unique biotic structure. Minerals in the biotic structures showed unique properties and bypass the thermodynamic and kinetic barriers. Therefore, investigations on the biotically induced microstructure is essential to identify the new mineral formation mechanism by analyzing crystal structures and morphology at a nano-scale. The significant implication as well as advantages of using scanning electron microscopy to characterize the biotic structures were discussed in this paper for the examples of hydrothermal vent area microbial mat and deep-sea ferromanganese crust sample.
Keywords
SEM; biotic structure; microbe-mineral interaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, J., Dong, H., Seabaugh, J., Newell, S. W., and Eberl, D. D. (2004) Role of microbes in the smectite-to-illite reaction. Science, 303(5659), 830-832.   DOI
2 Kim, J., Dong, H., Yang, K., Park, H., Elliott, W.C., Spivack, A., Koo, T., Kim, G., Morono, Y., Henkel, S., Inagaki, F., Zeng, Q., Hoshino, T., and Heuer, B. (2019) Naturally occurring, microbially induced smectite-to-illite reaction. Geology, 47(6), 535-539.   DOI
3 Koschinsky, A., Stascheit, A., Bau, M., and Halbach, P. (1997) Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts. Geochimica et Cosmochimica Acta, 61(19), 4079-4094.   DOI
4 Larock, P.A. and Ehrlich, H.L. (1975) Observations of bacterial microcolonies on the surface of ferromanganese nodules from Blake Plateau by scanning electron microscopy. Microbial ecology, 2(1), 84-96.   DOI
5 Li, Y.H. (1972) Geochemical mass balance among lithosphere, hydrosphere, and atmosphere. American Journal of Science, 272(2), 119-137.   DOI
6 Lovell, R.D., Jarvis, S.C., and Bardgett, R.D. (1995) Soil microbial biomass and activity in long-term grassland: effects of management changes. Soil Biology and Biochemistry, 27(7), 969-975.   DOI
7 Lysyuk, G.N. (2011, September) Biomineral microstructures in ferromanganese nodules: evidence of the biological and abiogenous origin. In Instruments, Methods, and Missions for Astrobiology XIV (Vol. 8152, p. 815207). International Society for Optics and Photonics.
8 Mbow, C. (2014). Biogeoscience: Africa's greenhouse-gas budget is in the red. Nature, 508(7495), 192-193.   DOI
9 Marino, E., Gonzalez, F. J., Lunar, R., Reyes, J., Medialdea, T., Castillo-Carrion, M., Bellido, E., and Somoza, L. (2018) High-resolution analysis of critical minerals and elements in Fe-Mn crusts from the Canary Island Seamount Province (Atlantic Ocean). Minerals, 8(7), 285.   DOI
10 Martin, Y.E. and Johnson, E.A. (2012) Biogeosciences survey: Studying interactions of the biosphere with the lithosphere, hydrosphere and atmosphere. Progress in Physical Geography, 36(6), 833-852.   DOI
11 Picard, A., Kappler, A., Schmid, G., Quaroni, L., and Obst, M. (2015) Experimental diagenesis of organo-mineral structures formed by microaerophilic Fe (II)-oxidizing bacteria. Nature Communications, 6(1), 1-8.
12 Riquelme, C., Marshall Hathaway, J.J., Enes Dapkevicius, M.D.L., Miller, A.Z., Kooser, A., Northup, D.E., Jurado, V., Fernandez, O., Saiz-Jimenez, C., and Cheeptham, N. (2015) Actinobacterial diversity in volcanic caves and associated geomicrobiological interactions. Frontiers in microbiology, 6, 1342.   DOI
13 Wang, X., Schroder, H.C., SchloBmacher, U., and Muller, W.E. (2009a) Organized bacterial assemblies in manganese nodules: evidence for a role of S-layers in metal deposition. Geo-Marine Letters, 29(2), 85-91.   DOI
14 Schindler, M. and Dorn, R.I. (2017) Coatings on rocks and minerals: The interface between the lithosphere and the biosphere, hydrosphere, and atmosphere. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 13(3), 155-158.   DOI
15 Sparling, G.P. and West, A.W. (1989) Importance of soil water content when estimating soil microbial C, N and P by the fumigation-extraction methods. Soil Biology and Biochemistry, 21(2), 245-253.   DOI
16 Templeton, A.S., Knowles, E.J., Eldridge, D.L., Arey, B.W., Dohnalkova, A.C., Webb, S.M., Bailey, B.E., Tebo, B.M., and Staudigel, H. (2009) A seafloor microbial biome hosted within incipient ferromanganese crusts. Nature Geoscience, 2(12), 872-876.   DOI
17 Tivey, M.K. (2007) Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography, 20(1), 50-65.   DOI
18 Trail, D., Tailby, N.D., Sochko, M., and Ackerson, M.R. (2015) Possible biosphere-lithosphere interactions preserved in igneous zircon and implications for Hadean earth. Astrobiology, 15(7), 575-586.   DOI
19 Wang, X.H., SchloBmacher, U., Natalio, F., Schroder, H.C., Wolf, S.E., Tremel, W., and Muller, W.E. (2009b) Evidence for biogenic processes during formation of ferromanganese crusts from the Pacific Ocean: Implications of biologically induced mineralization. Micron, 40(5-6), 526-535.   DOI
20 Yang, K. and Kim, J. (2016) Electron Energy Loss Spectroscopy (EELS) application to mineral formation. Journal of the Mineralogical Society of Korea, 29(2), 73-78.   DOI
21 Haferburg, G. and Kothe, E. (2007) Microbes and metals: interactions in the environment. Journal of basic microbiology, 47(6), 453-467.   DOI
22 Yang, K., Park, H., Son, S.K., Baik, H., Park, K., Kim, J., Yoon, J., Park, C., and Kim, J. (2019) Electron microscopy study on the formation of ferromanganese crusts, western Pacific Magellan Seamounts. Marine Geology, 410, 32-41.   DOI
23 Allen, M.A., Goh, F., Burns, B.P., and Neilan, B.A. (2009) Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology, 7(1), 82-96.   DOI
24 Bau, M. and Moller, P. (1993) Rare earth element systematics of the chemically precipitated component in Early Precambrian iron formations and the evolution of the terrestrial atmosphere-hydrosphere-lithosphere system. Geochimica et Cosmochimica Acta, 57(10), 2239-2249.   DOI
25 Dolgikh, G.I., Batyushin, G.N., Valentin, D.I., Dolgikh, S.G., Kovalev, S.N., Ovcharenko, V.V., and Yakovenko, S.V. (2002) Seismoacoustic Hydrophysical Complex for Monitoring the Atmosphere-Hydrosphere-Lithosphere System. Instruments and Experimental Techniques, 45(3), 401-403.   DOI
26 Emerson, D. and Moyer, C.L. (2002) Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Applied and Environmental Microbiology, 68(6), 3085-3093.   DOI
27 Gat, J.R. and Airey, P.L. (2006) Stable water isotopes in the atmosphere/biosphere/lithosphere interface: scaling-up from the local to continental scale, under humid and dry conditions. Global and Planetary Change, 51(1-2), 25-33.   DOI
28 Govenar, B. (2012) Energy transfer through food webs at hydrothermal vents: Linking the lithosphere to the biosphere. Oceanography, 25(1), 246-255.   DOI
29 Han, R., Liu, T., Li, F., Li, X., Chen, D., and Wu, Y. (2018) Dependence of secondary mineral formation on Fe (II) production from ferrihydrite reduction by Shewanella oneidensis MR-1. ACS Earth and Space Chemistry, 2(4), 399-409.   DOI
30 Haferburg, G. and Kothe, E. (2012) Biogeosciences in heavy metal-contaminated soils. In Bio-Geo Interactions in Metal-Contaminated Soils (pp. 17-34). Springer, Berlin, Heidelberg.
31 Hein, J.R. and Koschinsky, A. (2014). Deep-ocean ferromanganese crusts and nodules.
32 Iglesias-Rodriguez, M.D., Halloran, P.R., Rickaby, R.E., Hall, I.R., Colmenero-Hidalgo, E., Gittins, J.R., Green, R.H., Tyrrell, T., Gibbs, S.J., Dassow, P., Rehm, E., Armbrust, E.V., and Boessenkool, K. P. (2008) Phytoplankton calcification in a high-CO2 world. science, 320(5874), 336-340.   DOI
33 Kim, J.W., Peacor, D. R., Tessier, D., and Elsass, F. (1995) A technique for maintaining texture and permanent expansion of smectite interlayers for TEM observations. Clays and clay minerals, 43(1), 51-57.   DOI