• Title/Summary/Keyword: Mine ventilation

Search Result 29, Processing Time 0.021 seconds

A Comparative Study on the Auxiliary Fan Pressure and the Ventilation Efficiency in Large-opening Limestone Mine Airways (대단면 석회석 광산 갱도 내 국부선풍기 승압력 및 통기효과 비교 연구)

  • Park, Dongjun;Kang, Hyeonho;Lee, Changwoo
    • Tunnel and Underground Space
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Most of the local limestone mines are developed as large-opening underground mines, while mine ventilation is heavily dependent on the natural ventilation and auxiliary systems, rather than the mechanical ventilation system using main fans. The current auxiliary ventilation system with fan and ducting requires optimization since enhanced deployment of diesel equipment demands higher airflow rate and the associated cost is expected to be too excessive for the local mine operators. This paper aims at optimizing the fan capacity for the working site ventilation through comparing the fan pressure in the mine airway and the ventilation efficiency of an axial-flow fan and a propeller fan developed in this study.

A Study on Thermodynamic Natural Ventilation Analysis by the Field Survey of Underground Mines in Korea (현장실측을 통한 국내 일반광의 열역학적 자연통기력 연구)

  • Yu, Yeong-Seok;Roh, Jang-Hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.288-296
    • /
    • 2013
  • In this study, a total of 13 mines were finally selected as study subjects and field measurements were conducted. Thereafter, calculations of thermodynamic natural ventilation were attempted using spread sheets and solutions for natural ventilation of mine types with multiple vertical shafts were obtained. Based on the results, natural ventilation of each mine was quantified. In addition, changes in natural ventilation energy (NVE) and natural ventilation pressure (NVP) were estimated assuming mine deepening and the resultant values were applied to mine conditions to observe changes in flow rates. Natural ventilation pressure in domestic mines is generally calculated to be in a range of 5 Pa~300 Pa. Although NVP increases as the depth increases, resistance also increases. Therefore, as the depth increases, flow rates show a tendency of converging on a certain value because of the relationship between NVP and mine resistance. Natural ventilation using shafts with depth differences is effective up to depths of 200~300 m. However, flow rate change rates resulting from NVP are small at depths deeper than approximately 200~300 m. Therefore, if a mine is deepened over 300 m, NVP will become insufficient and thus additional pressure obtained through mechanical ventilation will be necessary.

A Study on Optimum Ventilation System in the Deep Coal Mine (심부 석탄광산의 환기시스템 최적화 연구)

  • Kwon, Joon Uk;Kim, Sun Myung;Kim, Yun Kwang;Jang, Yun Ho
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.186-198
    • /
    • 2015
  • This paper aims for the ultimate goal to optimize the work place environment through assuring the optimal required ventilation rate based on the analysis of the airflow. The working environment is deteriorated due to a rise in temperature of a coal mine caused by increase of its depth and carriage tunnels. To improve the environment, the ventilation evaluation on J coal mine is carried out and the effect of a length of the tunnel on the temperature to enhance the ventilation efficiency in the subsurface is numerically analyzed. The analysis shows that J coal mine needs $17,831m^3/min$ for in-flow ventilation rate but the total input air flowrate is $16,474m^3/min$, $1,357m^3/min$ of in-flow ventilation rate shortage. The temperatures were predicted on the two developed models of J mine, and VnetPC that is a numerical program for the flowrate prediction. The result of the simulation notices the temperature in the case of developing all 4 areas of -425ML as a first model is predicted 29.30 at the main gangway 9X of C section and in the case of developing 3 areas of -425ML excepting A area as a second model, it is predicted 27.45 Celsius degrees.

A Study on Mine Ventilation Network (광산 통기 네트워크 연구)

  • Kim, Soo Hong;Kim, Yun Kwang;Kim, Sun Myung;Jang, Yun Ho
    • Tunnel and Underground Space
    • /
    • v.27 no.4
    • /
    • pp.217-229
    • /
    • 2017
  • This study focuses on the improvement of the working environment in domestic collieries where temperature is increasing due to heat of the earth that is caused by the long-term mining. In order to improve the working environment of the mine, a ventilation evaluation was carried out for Hwasoon Mining Industry. In order to increase the ventilation efficiency of the mine, numerical analysis of the effect on temperature was carried out by using climsim, a temperature prediction program. The analysis shows that A coal mine needs $6,152m^3/min$ for in-flow ventilation rate but the total input air flowrate is $4,710m^3/min$, $1,442m^3/min$ of in-flow ventilation rate shortage. The 93 m hypothetical ventilation shaft from -395 ML to -488 ML could result about $3^{\circ}C$ temperature drop in the coal mine of -488 ML far. As a result of predicting the $CO_2$ concentration at -523 ML development using artificial neural network, the emission of $CO_2$ increased as the amount of coal and coal bed thickness increased. The factors that have the greatest effect on the amount of $CO_2$ emissions were coal layer thickness and coal mining. And, as the air quantity increases, it has a great effect on the decrease of carbon dioxide concentration.

Ventilation Efficiency Evaluation of Domestic Limestone Mine Using Tracer Gas Method (추적가스법을 적용한 국내 석회석 광산의 환기성능 평가 연구)

  • Kim, Young-su;Roh, Jang-hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.274-282
    • /
    • 2016
  • Natural ventilation is employed in limestone mines that have been currently operated in Korea, and there has been a growing issue of a significantly weak airflow caused by the large-scale excavation. Thus, the air quality in the working area is considerably poor. In order to improve this circumstance, it is mainly required to examine ventilation performance. In this study, the examination of ventilation efficiency was conducted by using tracer gas method. The result of this work indicated detailedly the ventilation problems in research mine, in that extremely low air velocity, recirculation, and air change rate were evaluated quantitatively using tracer gas. Therefore the ventilation performance evaluation using tracer gas can be opted as a precise method to improve the working area in mines.

A Study of Efficient Ventilation System in Deep Mines (심부 광산의 효율적 환기 시스템에 관한 연구)

  • Song, Doo-Hwan;Kim, Yun-Kwang;Kim, Teak-Soo;Kim, Sang-Hwan
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.168-174
    • /
    • 2016
  • The working environment is deteriorated due to a rise in temperature of a coal mine caused by increase of its depth and carriage tunnels. To improve the environment, the temperature distribution resulted by using the fan type ventilation system aiming for the temperature drop is calculated by using a fluid dynamic analysis program. The analysis shows that A coal mine needs 6,152 m3 min-1 for in-flow ventilation rate but the total input air flowrate is 4,710 m3 min-1, 1,442 m3 min-1 of in-flow ventilation rate shortage and the temperature between the carriage tunnel openings and the workings with exhausting ventilation system type is 2~3 ℃ less than that with blowing ventilation system type. The exhausting ventilation system type would be more effective than blowing ventilation system when the distance between the carriage tunnel openings and the workings is relatively far.

A Study on the Ventilation Effects of the Shaft Development at a Local Limestone Mine (국내 석회석 광산 수갱 굴착에 의한 통기효과 분석 연구)

  • Lee, Changwoo;Nguyen, Van Duc;Kubuya, Kiro Rocky;Kim, Chang O
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.609-619
    • /
    • 2018
  • This study was carried out at a local limestone mine to analyze the ventilation efficiency of the shaft equipped with a main fan. The results show that its ventilation efficiency is clearly verified for the natural as well as the mechanical ventilation. The airflow rate of $11.7m^3/s$ was induced by the natural ventilation force and the maximum quantity is almost same as the airflow rate estimated by monitoring the average temperatures in the upcast and downcast air columns. Meanwhile, the airflow rate exhausted by the main fan through the shaft was $20.3{\sim}24.8m^3/s$; variation of the quantity was caused by the upward shift of the mine ventilation characteristic curve due to the frequent movement of the equipment. This indicates efforts are required to reduce the ventilation resistance and raise the quantity supplied by the main fan. The turbulent diffusion coefficients along the 1912 m long airway from the portal to the shaft bottom was estimated to be $15m^2/s$ and $18m^2/s$. Since these higher coefficients imply that contaminants will be dispersed at a faster velocity than the airflow, prompt exhaust method should be planned for the effective air quality control. The ventilation shaft and main fan are definitely what local limestone mines inevitably need for better working environment and sustainable development.

Review of Environmental Monitoring and Communication System in Underground Mines Using Wireless Sensor Network (무선센서 네트워크를 이용한 지하광산 내 환경 모니터링과 통신 시스템의 연구 동향 분석 및 고찰)

  • Lee, Seungjun;Park, Yohan;Lee, Hakkyung;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.209-231
    • /
    • 2018
  • Severe mine disasters have continued to occur around the world. To ensure worker's health and safety and enhance the productivity, a number of studies have been conducted for the development of wireless sensor network (WSN), environmental monitoring, and communication system in underground mines. An increase in development and application of these systems has just begun with the introduction of information and communication technology into the mining industry in Korea, and yet there have been only a few studies that considered the underground mine ventilation system. This study presented the literature review on the development of WSN and environmental monitoring in underground mines, and especially, on 7 subjects in terms of underground mine ventilation. Moreover, studies that especially conducted real-time environmental monitoring were reviewed and categorized by each commercial software commonly utilized for the ventilation network analysis. For the application in domestic underground mines, further issues were discussed regarding research subjects that may be needed in the future and domestic environmental standards that has been used in the underground mine operation. This paper is expected to be useful for the development of WSN-based environmental monitoring and communication system, as well as for related studies in the future.

Development of a Low Pressure Auxiliary Fan for Local Large-opening Limestone Mines (대단면국내석회석광산용저풍압국부선풍기개발연구)

  • Lee, Chang Woo;Nguyen, Van Duc
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.543-555
    • /
    • 2015
  • At present, local limestone mines with large opening employ auxiliary fans for workplace ventilation which have been used in coal mines with much smaller airways. Considering the low static pressure loss in the large-opening mines, high pressure auxiliary fans face serious economical limitations mainly due to their excessive capacity. The optimal fan selected for the ventilation in large-opening working places should supply air quantity enough for maintaining safe environment and keep its operating cost as low as possible. This study focuses on the development of a low pressure auxiliary fan designed to have smaller range of the static head but to have more potential for higher ventilation and energy efficiency. The flow characteristics of high and low pressure auxiliary fans were theoretical as well as experimentally investigated to assess the ventilation efficiency in term of environmental and economical aspects. Moreover, the low pressure fan was tested in two limestone mine sites with small and large cross-sectional areas for evaluating its ventilation efficiency. Results from this study can be applied to improve the economy and efficiency of auxiliary fan for ensuring better air quality and work environment management.

A periodic case study of diesel vehicle drivers exposed to diesel particulate matter in an underground coal mine

  • Lee, Sugil;Jankewicz, Ganyk;Kim, Jung-Hee;Chung, Kwang Bo
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.265-270
    • /
    • 2018
  • This study was to measure the exposure of diesel vehicle drivers to elemental carbon (EC) as an indicator of diesel particulate matter (DPM) emitted from diesel vehicles in an underground coal mine over 3 years as per NIOSH Method 5040. Our study results (range $10{\mu}g/m^3-377{\mu}g/m^3$ for the loader drivers, $19{\mu}g/m^3-162{\mu}g/m^3$ for the SMV drivers) were similar or less than previous study results (range $5{\mu}g/m^3-2,200{\mu}g/m^3$) for normal mine operations. From this study results, it appeared that the exposures decreased in the second and the third year. It is thought that the reasons for the decreased personal DPM (EC) exposures over the 3 years were related to the following recommendations; more frequent monitoring and maintenance of the diesel vehicles and their DPM filtration systems, more consistent monitoring of the mine's ventilation system and changes of work practices such as minimizing the opening of diesel vehicle windows. An educational program on adverse health effects of exposure to DPM and use of respiratory protection (P2 respirators) also assisted in minimizing driver exposure to DPM.