• Title/Summary/Keyword: Mine drainage water

Search Result 156, Processing Time 0.019 seconds

Neutralization of Pyrophyllite Mine Wastes by the Lime Cake By-Product (부산석회를 이용한 납석광산 폐석의 중화처리)

  • Yoo, Kyung-Yoal;Cheong, Young-Wook;Ok, Yong-Sik;Yang, Jae-E.
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.215-221
    • /
    • 2005
  • Numerous abandoned or closed mines are present in the steep mountain valleys in Korea due to the depression of the mining industry since the late 1980s. From the mines, enormous amounts of wastes were dumped on the slopes causing sedimentation and acid mine drainage to be discharged directly into streams causing detrimental effects on surrounding environment. Objective of this research was to evaluate the feasibility of the lime cake by-product from the soda ash production (Solvay process) to neutralize the pyrophyllite mine wastes, which have discharged the acid drainage to soil and stream in the watershed. The pH of mine wastes was strongly acidic at pH 3.67 containing over 16% of $Al_2O_3$ and 11% of $Fe_2O_3$. Whereas the lime cake by-product was strongly basic at pH 9.97 due to high contents of CaO, MgO and $CaCl_2$ as major components. Column experiments were conducted to test the neutralizing capacity of the lime cake by-product for the acidic pyrophyllite mine wastes. The column packed with the wastes (control) was treated with the lime cake by-product, calcium carbonate, the dressing soil or combination. The distilled water was eluted statically through the column and the leachate was collected for the chemical analyses. Treatments of the mine wastes with the lime cake by-product (or calcium carbonate) as mixtures increased pH of the leachate from $3.5{\sim}4.0\;to\;7{\sim}8$. Concentrations of Fe and Al in the leachate were also decreased below 1.0 mg $L^{-1}$. A Similar result was observed at the combined treatments of the mine waste, the lime by-product (or calcium carbonate) and the dressing soil. The results indicated that the lime cake by-product could sufficiently neutralize the acid drainage from the pyrophyllite mine wastes without dressing soils.

A Study of Fluoride and Arsenic Adsorption from Aqueous Solution Using Alum Sludge Based Adsorbent (알럼 슬러지 기반 흡착제를 이용한 수용액상 불소 및 비소 흡착에 관한 연구)

  • Lee, Joon Hak;Ji, Won Hyun;Lee, Jin Soo;Park, Seong Sook;Choi, Kung Won;Kang, Chan Ung;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.667-675
    • /
    • 2020
  • An Alum-sludge based adsorbent (ASBA) was synthesized by the hydrothermal treatment of alum sludge obtained from settling basin in water treatment plant. ASBA was applied to remove fluoride and arsenic in artificially-contaminated aqueous solutions and mine drainage. The mineralogical crystal structure, composition, and specific surface area of ASBA were identified. The result revealed that ASBA has irregular pores and a specific surface area of 87.25 ㎡ g-1 on its surface, which is advantageous for quick and facile adsorption. The main mineral components of the adsorbent were found to be quartz(SiO2), montmorillonite((Al,Mg)2Si4O10(OH)2·4H2O) and albite(NaAlSi3O8). The effects of pH, reaction time, initial concentration, and temperature on removal of fluoride and arsenic were examined. The results of the experiments showed that, the adsorbed amount of fluoride and arsenic gradually decreased with increasing pH. Based on the results of kinetic and isotherm experiments, the maximum adsorption capacity of fluoride and arsenic were 7.6 and 5.6 mg g-1, respectively. Developed models of fluoride and arsenic were suitable for the Langmuir and Freundlich models. Moreover, As for fluoride and arsenic, the increase rate of adsorption concentration decreased after 8 and 12 hr, respectively, after the start of the reaction. Also, the thermodynamic data showed that the amount of fluoride and arsenic adsorbed onto ASBA increased with increasing temperature from 25℃ to 35℃, indicating that the adsorption was endothermic and non-spontaneous reaction. As a result of regeneration experiments, ASBA can be regenerated by 1N of NaOH. In the actual mine drainage experiment, it was found that it has relatively high removal rates of 77% and 69%. The experimental results show ASBA is effective as an adsorbent for removal fluoride and arsenic from mine drainage, which has a small flow rate and acid/neutral pH environment.

Variations in Geochemical characteristics of the Acid Mine Drainages due to Mineral-Water Interactions in Donghae Mine Area in Taebaek, Korea (태백 동해광인일대의 물-광물의 반응에 의한 산성광산배수의 지구화학적 특성 변화)

  • 김정진;김수진
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.55-66
    • /
    • 2002
  • There are several abandoned coal mines around Donghae mine area in the Taebaek coal field. Two major creeks, Soro and Sanae, are contaminated with the colored precipitates formed from the coal mine drainages. Bed rocks of the study area consist of limestone, shale, and sandstone. Limestone consisted mainly of calcite and dolomite, and shale of quartz, pyropyllite and chlorite, and sandstone of quatz and illite. Coal coal spoil dumps composed mainly of pyrite and chlorite. The oxidative dissolution of sulfide minerals leads to acid mine drainage and adds the metal ions in the stream water. The ion concentrations of Fe, Ca, Mg, Al, Si, SO$_{4}$in the stream polluted by AMD are generally higher than those in the unpolluted stream water. High concentrations of Ca and Mg, Al and Si can be resulted from dissolution of carbonate minerals such as calcite, dolomite and aluminosilicates such as chlorite, pyrophyllite. Although the Fe, Al, Si, SO$_{4}$ contents are considerbly high in the acid water released from the mine adits, they become decreased downstream due to dilution of unpolluted water and precipitation of oxide/hydroxide and sulfate minerals on the bottom of stream.

Application of geophysical and geochemical methods to investigation of AMD environment (AMD 환경평가를 위한 지구물리${\cdot}$지구화학탐사의 적용사례)

  • Kim Jisoo;Han Soohyung;Choi Sanghoon;Lee Pyeongkoo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.267-272
    • /
    • 2005
  • Geophysical surveys were performed in three abandoned mines: Jangpoong, Kwangyang, Imchon. The main objectives of the researches include delineating the pathways of leachate from acid mine drainage(AMD), mapping buried rock wastes and tailings, detecting drainage pipes, and investigating the gallery and membrane, if they exist, Geophysical responses were well correlated with the results from water sample data(i.e., pH, EC, heavy metal contents, $SO_4^{-2}$). Main pathways of the leachate were successfully detected in electrical resistivity sections and self-potential(SP) profiles, whereas waste rocks, drainage pipes, and membranes were effectively located by incorporating seismic refraction, electrical resistivity and GPR methods.

  • PDF

The Acid Rock Drainage and Hydraulic Characteristics of the Waste Rock Dump (폐석적치장의 산성배수발생 및 수리특성 분석)

  • Cheong, Young Wook;Ji, Sang Woo;Yim, Gil Jae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.4
    • /
    • pp.13-24
    • /
    • 2004
  • This study was carried out to plan the prevention of the generation and discharge of Acid Rock Drainage (ARD). The Acid Base Accounting(ABA) test was performed for geological materials such as pit wall, waste rock and stream sediments near the Imgi abandoned pyrophyllite mine in Busan, Korea. In addition, hydraulic characteristics were tested with the disk tension infiltrometer around the waste rock dump. Maximum Potential Acidity(MPA) of geological materials near the Imgi mine was 246.942kg $H_2SO_4/t$, and maximum Acid Neutralising Capacity(ANC) was 8.7kg $H_2SO_4/t$. These results indicate the pit wall and waste rock, except most of stream sediments are acid generating geological materials. These have salt and free hydrogen ion which resulted from oxidation of sulfides. Hence they could be convert rain water to acid rock drainage. Although the waste rock dump of the Imgi mine have very low infiltration rate, slopes of the waste rock dump have many "V" type erosion gullies and multi-layers. These gullies and multi-layers have coarse clastic particle layers which have very large hydraulic conductivity. Through this coarse clastic particle layer a large part of rain flow into ground. And also this layer could function as aeration path which induced oxidation of sulfide minerals and generation of ARD continuously.

  • PDF

Field Experiment on Iron and Aluminum Removal from Acid Mine Drainage Using an Apatite Drain System (인회석 배수시스템을 이용한 산성수의 철 및 알루미늄 제거에 대한 현장경험)

  • Choi, Jung-Chan;West, Terry R.
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.315-323
    • /
    • 1996
  • An apatite drain was constructed on September 30, 1994 at the Green Valley Abandoned Coal Mine site near Terre Haute in west central Indiana. The primary objective of this experiment is to evaluate the long-term ability of the apatite drain to mitigate acid mine drainage (AMD) under field conditions. The drain 9 m long, 3.3 m wide, and 0.75 m deep, contain 95 rum to No. 30 mesh-size apatite ore (francolite) and receive AMD seepage from reclaimed gob piles, and designed according to the laboratory testing. The apatite drain was covered with limestone riprap and filter fabric to protect the drainage system from stormwater and siltation. The drain consists of about 50 metric tons of apatite ore obtained from a phosphate mine in Florida. A gabion structure was constructed downstream of the apatite drain to create a settling pond to collect precipitates. Apatite effectively removed iron up to 4,200 mg/l, aluminum up to 830 mg/l and sulfate up to 13,430 mg/l. The pH was nearly constant for the influent and effluent, ranging between 3.1 and 4.3. Flow rate measured at the gabion structure ranged from 3 to 4.5 l/m. Precipitates of iron and aluminum phosphate (yellow and white suspendid solids) continued to accumulate in the settling pond.

  • PDF

A Study on the Removal of Fluorine from Leachate of Reclaimed Mine Waste Dump Site Using Alum Coagulation (알럼 응집을 이용한 광산폐기물 적치장 침출수 내 불소 제거 연구)

  • Sang-Woo Lee;Woo-Chun Lee;Seong Hee Kim;Sang Heon Jeong;Bo Young Lee;Sang-Hwan Lee;Soon-Oh Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.19-32
    • /
    • 2023
  • This study was conducted to remove fluorine (F) (initial concentration of 9.5 mg/L) from leachate of reclaimed mine waste dump site via different methods: (1) co-precipitation using Ca-based materials; (2) adsorption using activated carbon and fly ash; and (3) coagulation and sedimentation using alum. The F removal efficiencies of each case were estimated as 65.6% (Ca co-precipitation), 27.9% (adsorption of activated carbon), 71.5% (adsorption of fly ash), and 96.6% (alum coagulation and sedimentation). In addition, the applicability of the continuous treatment process using alum coagulation was evaluated by lab-scale experiments using simulated mine drainage containing F of lower (6.4 mg/L) and higher (15.7 mg/L) concentrations, and it was confirmed that the treatment of both cases met the domestic standard (below 3 mg/L) for discharged water in clean areas. Furthermore, the results of bench-scale field tests indicated that the water quality standard of discharged water could be satisfied with the proper operation and management of the process.

Damage Conditions and Assessment for Cut Slope Structures due to Acid Rock Drainage (산성암반배수에 의한 절취사면 구조물의 피해 현황과 평가)

  • Lee Gyoo Ho;Kim Jae Gon;Park Sam-Gyu;Lee Jin-Soo;Chon Chul-Min;Kim Tack Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.83-92
    • /
    • 2005
  • The aim of this study was to investigate damage conditions of cut slope structures due to acid rock drainage (ARB) and to assess the acid production potential of various rocks. Acid rock drainage is produced by the oxidation of sulfide minerals contained in coal mine zone and mineralization belt of Pyeongan supergroup and Ogcheon group, pyrite-bearing andesite, and Tertiary acid sulfate soils in Korea. Most of cut slopes producing ARB have been treated with shotcrete to reduce ARD. According to the field observations, ARD had an adverse effect on slope structures. The corrosion of shotcrete, anchors and rock bolts and the bad germination and growth diseases of covering plants due to ARD were observed in the field. The concentration of heavy metals and pH of ARD from cut slope exceeded the environmental standard, indicating a high potential of environmental pollution of surrounding soil, surface water and ground water by the ARD. According to acid base accounting (ABA) of the studied samples, hydrothermally altered volcanic rocks, tuffs, coaly shales, tailings of metallic mine had a relatively high potential of acid production but gneiss and granite had no or less acid production potential. It is expected that the number of cut slopes will increase hereafter considering the present construction trend. In order to reduce the adverse effect of ARD in construction sites, we need to secure the data base for potential ARD producing area and to develop the ARD reduction technologies suitable.

Slope Stability Analysis of Improved Wasted Mine Tailing Landfill Using Fine Recycled-Concrete Aggregates (폐콘크리트 재생잔골재를 활용한 개량 폐광미 매립지의 사면안정해석)

  • Ahn, Nam-Kyu;Kim, Tae-Hyung;Oh, Je-Ill;Lee, Ju-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.145-150
    • /
    • 2005
  • An extensive numerical analysis is carried out to investigate the slope stability of the wasted mine tailing landfill constructed by the utilization of fine recycled-concrete aggregates. To do this, first, the physical and mechanical properties of the fine recycled-concrete aggregates and the wasted mine tailing are investigated, and the settlement and the change of material properly of the fine recycled-concrete aggregates resulted from reaction with water are also examined. The $OH^-$ elution from the fine recycled-concrete aggregates reacted with water slightly causes the change of material properties such as porosity, permeability and waster absorption, but the settlement does not happen noticeably. The results of numerical analysis of the landfill slope built with wasted mine tailing and recycled-concrete aggregates in alternate layer indicate that slope stability increases with decreasing the slope ratio, with decreasing the groundwater level inside slope, and with increasing the depth of fine recycled-concrete aggregate layer. Based on this study, thus, engineers working in related to the wasted mine tailing landfill design and construction using the fine recycled-concrete aggregates should be considered the slope ratio, the groundwater level, the depth of fine recycled-concrete aggregate layer.

Geochemistry of Stream Water around the Abandoned Boeun Coal Mine, Hoenam Area (보은제일폐탄광 주변 하천수의 지구화학적 특징)

  • Jeon, Seo-Ryeong;Shin, Ik-Jong;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.1
    • /
    • pp.20-27
    • /
    • 2001
  • Stream water chemistry in the abandoned Boeun Jeil coal mine area was studied for a period of 3 months, including rainy and dry season. The stream waters were a nearly neutral and slightly alkali condition, and $Mg-SO_4$ type with Mg>Ca>Na>K and $SO_4>HCO_3>Cl>NO_3$. Chemical composition of the stream water was quite irregular during the experimental period. Concentrations of Na, K, $HCO_3$, U, Sr, and Cr decreased by $10{\sim}30%$ during rainy season, caused by dilution effects with rain. The concentration of Ca, Mg, $NO_3$, Cd, and Co increased during the rainy season, caused by more easily dissolved from bedrocks or mine drainage with slightly acidic condition than dry season. The stream water was enriched in Mg, Ca, $HCO_3$, $SO_4$, Al, Fe, Zn, Ni, Co, Cr, Cd, Sr and U. Concentrations of Na, Mg, Ca, $SO_4$, $HCO_3$, Fe, Zn, Ni, Sr, and U decreased linearly with distance from the mine adit. These elements were strongly controlled by dilution of unpolluted water influx and/or adsorption on the clay minerals and iron oxyhydroxide precipitates. This mine area exhibited two main weathering processes ; 1) oxidation with acidification derived from Fe sulphides, and 2) pH buffering due to Ca and Mg carbonate dissolution. This weathering processes were followed by adsorption of metals on iron oxyhydroxides and precipitation.

  • PDF