• Title/Summary/Keyword: Mimic

Search Result 847, Processing Time 0.032 seconds

DC ∼ 45 GHz CPW Wideband Distributed Amplifier Using MHEMT (MHEMT를 이용한 DC ∼ 45 GHz CPW 광대역 분산 증폭기 설계 및 제작)

  • Jin Jin-Man;Lee Bok-Hyung;Lim Byeong-Ok;An Dan;Lee Mun-Kyo;Lee Sang-Jin;Ko Du-Hyun;Beak Yong Hyun;Oh Jung-Hun;Chae Yeon-Sik;Park Hyung-Moo;Kim Sam-Dong;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.12
    • /
    • pp.7-12
    • /
    • 2004
  • In this paper, CPW wideband distributed amplifier was designed and fabricated using 0.1 $\mum$ InGaAs/InAlAs/GaAs Metamorphic HEMT(High Electron Mobility Transistor). The DC characteristics of MHEMT are 442 mA/mm of drain current density, 409 mS/mm of maximum transconductance. The current gain cut-off frequency(fT) is 140 GHz and the maximum oscillation frequency(fmax) is 447 GHz. The distributed amplifier was designed using 0.1 $\mum$ MHEMT and CPW technology. We designed the structure of CPW curve, tee and cross to analyze the discontinuity characteristics of the CPW line. The MIMIC circuit patterns were optimized electromagnetic field through momentum. The designed distributed amplifier was fabricated using our MIMIC standard process. The measured results show S21 gain of above 6 dB from DC to 45 GHz. Input reflection coefficient S11 of -10 dB, and output reflection coefficient S22 of -7 dB at 45 GHz, respectively. The chip size of the fabricated CPW distributed amplifier is 2.0 mm$\times$l.2 mm.

Development of a Simulation Training Simulator using KEPS (시뮬레이터 연계용 교육, 훈련 Mimic Board 시스템 개발)

  • Cha, S.T.;Kim, T.K.;Choi, J.H.;Kim, C.K.;Lee, C.K.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.68-69
    • /
    • 2006
  • A new type of simulation training system for power system operation is presented in this paper It is based on transmission mimic board, double screen PC, mimic control panel, and real-time digital simulator, KEPS. The operating simulation includes the simulations of the control panel interface and the simulator. The mimic board displays transmission network summary information using a software view of the hardware based mimic board. The symbols, numbers and colors layout exactly match those of the KEPS draft case to provide operators a familiar and effective starting point. This paper describes the development of an innovative training system, utilizing the benefits of 3 dimension visualization s/w and communication-control s/w to create the appropriate operational environment and allow simulation of various power system operations without the restrictions of other training methods. Experiences gained in developing concepts and meeting considerable s/w challenges are outlined, and the potential of the simulator for future operations training discussed.

  • PDF

Studies on the MIMIC Power Amplifier using the AlGaAs/InGaAs/GaAs PHEMT (AlGaAs/InGaAs/GaAs PHEMT를 이용한 MIMIC Power Amplifier 제작 연구)

  • Lee, Seong-Dae;Chae, Yeon-Sik;Yun, Yong-Sun;Yun, Jin-Seop;Lee, Eung-Ho;Lee, Jin-Gu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.1
    • /
    • pp.30-36
    • /
    • 2001
  • 0.35 ${\mu}{\textrm}{m}$-gate AlGaAs/InGaAs PHEMTs have been fabricated using electron beam lithography. DC and AC characteristics of PHEMTs having different gate widths and number of fingers were measured at various bias conditions. An MIMIC power amplifier operating at 35 GHz has been designed and fabricated using passive element library. The power amplifier showed gain and input reflection coefficient of 7.9 ㏈ and -15 ㏈, respectively, at 27.6 GHz.

  • PDF

The Phenotype of the Soybean Disease-Lesion Mimic (dlm) Mutant is Light-Dependent and Associated with Chloroplast Function

  • Kim, Byo-Kyong;Kim, Young-Jin;Paek, Kyoung-Bee;Chung, Jong-Il;Kim, Jeong-Kook
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.395-401
    • /
    • 2005
  • The dlm (disease lesion mimic) mutant of soybean (Glycine max L. Merr) shows the similar lesion of a soybean disease caused by a fungus, Corynespora cassilcola. The lesion was examined at cellular and molecular level. Trypan blue staining result indicated that cell death was detectable in the entire region of leaves excluding veins when the lesions had already been developed. We found that the mesophyll cells of palisade layer in the dim mutant appeared to be wider apart from each other. The chloroplasts of the dim mutant cells contained bigger starch granules than those in normal plants. We also found that the lesion development of dlm plant was light-dependent and the starch degradation during the dark period of diurnal cycle was impaired in the mutant. Three soybean pathogenesis-related genes, PR-1a, PR-4, and PR-10, were examined for their expression patterns during the development of disease lesion mimic. The expression of all three genes was up-regulated to some extent upon the appearance of the disease lesion mimic. Although the exact function of DLM protein remains elusive, our data would provide some insight into mechanism underling the cell death associated with the dim mutation.

Oculomotor system characteristic by using MIMIC program (MIMIC 프로그램에 의한 동안계의 특성)

  • 변윤식;박상희
    • 전기의세계
    • /
    • v.30 no.5
    • /
    • pp.291-296
    • /
    • 1981
  • In the paper, in order to get the characteristics of the saccadic and the smooth pursuit movements of the oculomotor systems, a revised stochastic sampled data model suggested by Young et. al. was simulated and analyzed by using the MIMIC language. The results are summerized as follows; (1) The predictability to the sinusoidal inputs increased as the input frequency increased, but at the frequency of 1.0[Hz] the prediction started to decrease. (2) The responses of the system drifted when the system was open-looped. (3) The responses showed the transient state during the first period of the input waves, and then moved into the steady state.

  • PDF

Electron Emission Properties of CNT Arrays Grown with MIcro Molding In Capillary (MIMIC) Assisted Process

  • Lim, Han-Eol;Ryu, Je-Hwang;Lim, Joon-Won;Son, Byoung-Taek;Lee, Yi-Sang;Jang, Jin;Park, Kyu-Chang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1535-1538
    • /
    • 2008
  • Carbon nanotube arrays were fabricated using micro molding in capillary (MIMIC) process. Patterns remained on the surface in the pattern complementary to that present in the mold. CNTs were selectively grown on the MIMIC patterned sites with a triode PECVD. And turn on field for $10\;{\mu}A/cm^2$ electron emission current was $2.2\;V/{\mu}m$ turn on field.

  • PDF

A Motion Capture and Mimic System for Motion Controls (운동 제어를 위한 운동 포착 및 재현 시스템)

  • Yoon, Joongsun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.59-66
    • /
    • 1997
  • A general procedure for a motion capture and mimic system has been delineated. Utilizing sensors operated in the magnetic fields, complicated and optimized movements are easily digitized to analyze and repreduce. The system consists of a motion capture module, a motion visualization module, a motion plan module, a motion mimic module, and a GUI module. Design concepts of the system are modular, open, and user friendly to ensure the overall system performance. Custom-built and/or off-the-shelf modules are ease- ly integrated into the system. With modifications, this procedure can be applied for complicated motion controls. This procedure is implemented on tracking a head and balancing a pole. A neural controller based on this control scheme dtilizing human motions can easily evolve from a small amount of learning data.

  • PDF

High LO-RF Isolation W-band MIMIC Single-balanced Mixer (높은 LO-RF 격리 특성의 W-band MIMIC Single-balanced 믹서)

  • An Dan;Lee Bok-Hyung;Lim Byeong-Ok;Lee Mun-Kyo;Lee Sang-Jin;Jin Jin-Min;Go Du-Hyun;Kim Sung-Chan;Shin Dong-Hoon;Park Hyung-Moo;Park Hyim-Chang;Kim Sam-Dong;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.6 s.336
    • /
    • pp.67-74
    • /
    • 2005
  • In this paper, high LO-RF isolation W-band MIMIC single-balanced mixer was designed and fabricated using a branch line coupler and a $\lambda$/4 transmission line. The simulation results of the designed 94 GHz balun show return loss of -27.9 dB, coupling of -4.26 dB, and thru of -3.77 dB at 94 GHz, respectively. The isolation and phase difference were 23.5 dB and $180.2^{\circ}$ at 94 GHz. The W-band MIMIC single-balanced mixer was designed using the 0.1 $\mu$m InGaAs/InAlAs/GaAs Metamorphic HEMT diode. The fabricated MHEMT was obtained the cut-off frequency(fT) of 189 GHz and the maximum oscillation frequency(fmax) of 334 GHz. The designed MIMIC single-balanced mixer was fabricated using 0.1 $\mu$m MHEMT MIMIC Process. From the measurement, the conversion loss of the single-balanced mixer was 23.1 dB at an LO power of 10 dBm. Pl dB(1 dB compression point) of input and output were 10 dBm and -13.9 dBm respectively. The LO-RF isolations of single-balanced mixer was obtained 45.5 dB at 94.19 GHz. We obtained in this study a higher LO-RF isolation compared to some other balanced mixers in millimeter-wave frequencies.

MIMIC 94 GHz high isolation single balanced cascode mixer (94 GHz 대역의 높은 격리 특성의 MIMIC single balanced cascode 믹서)

  • Lee, Sang-Jin;An, Dan;Lee, Mun-Kyo;Moon, Sung-Woon;Bang, Suk-Ho;Baek, Tae-Jong;Kwon, Hyuk-Ja;Jun, Byoung-Chul;Yoon, Jin-Seob;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.9
    • /
    • pp.25-33
    • /
    • 2007
  • In this paper, the high isolation and wideband 94 GHz MIMIC(Millimeter-wave Monolithic Integrated Circuit) single balanced cascode mixer was designed and fabricated. Also, we designed and fabricated a 3 dB tandem coupler which has a high isolation and wideband characteristic. The single balanced resistive mixer which does not require an external IF balun was designed using the 0.1 ${\mu}m$ InGaAs/InAlAs/GaAs metamorphic HEMT(High Electron Mobility Transistor). The DC characteristics of MHEMT's are 665 mA/mm of drain current density, 691 mS/mm of maximum transconductance. The current gain cut-off frequency($f_T$) is 189 GHz and the maximum oscillation frequency($f_{max}$) is 334 GHz. A 94 GHz single balanced cascode mixer was fabricated using our 0.1 ${\mu}m$ MHEMT MIMIC process. From the measurements, the fabricated couplers showed wideband characteristics. The conversion loss of single balanced cascode mixer was 9.8 dB at an LO power of 10.9 dBm. The LO to RF isolation of single balanced cascode mixer was 29.5 dB at 94 GHz. We obtained in this study a higher LO-RF isolation compared to some other single balanced mixers.

The low conversion loss and low LO power V-band MIMIC Up-mixer (낮은 LO 입력 및 변환손실 특성을 갖는 V-band MIMIC Up-mixer)

  • Lee Sang Jin;Ko Du Hyun;Jin Jin Man;An Dan;Lee Mun Kyo;Cho Chang Shik;Lim Byeong Ok;Chae Yeon Sik;Park Hyung Moo;Rhee Jin Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.103-108
    • /
    • 2004
  • In this paper, we present MIMIC(Millimeter-wave Monolithic Integrated Circuit) up-mixer with low conversion loss and low LO power for the V-band transmitter applications. The up-mixer was successfully integrated by using 0.1 ㎛ GaAs pseudomorphic HEMTs(PHEMTs) and coplanar waveguide (CPW) structures. The circuit is designed to operate at RF frequencies of 60.4 GHz, IF frequencies of 2.4 GHz, and LO frequencies of 58 GHz. The fabricated MIMIC up-mixer size is 2.3 mmxl.6 mm. The measured results show that the low conversion loss of 1.25 dB when input signal is -10.25 dBm at LO power of 5.4 dBm. The LO to RF isolation is 13.2 dB at 58 GHz. The fabricated V-band up-mixer represents lower LO input power and conversion loss characteristics than previous reported millimeter-wave up-mixers.