• Title/Summary/Keyword: Milnor number

Search Result 4, Processing Time 0.018 seconds

A BOUND FOR THE MILNOR SUM OF PROJECTIVE PLANE CURVES IN TERMS OF GIT

  • Shin, Jaesun
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.461-473
    • /
    • 2016
  • Let C be a projective plane curve of degree d whose singularities are all isolated. Suppose C is not concurrent lines. P loski proved that the Milnor number of an isolated singlar point of C is less than or equal to $(d-1)^2-{\lfloor}\frac{d}{2}{\rfloor}$. In this paper, we prove that the Milnor sum of C is also less than or equal to $(d-1)^2-{\lfloor}\frac{d}{2}{\rfloor}$ and the equality holds if and only if C is a P loski curve. Furthermore, we find a bound for the Milnor sum of projective plane curves in terms of GIT.

A NOTE ON OPTIMIZATION WITH MORSE POLYNOMIALS

  • Le, Cong-Trinh
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.671-676
    • /
    • 2018
  • In this paper we prove that the gradient ideal of a Morse polynomial is radical. This gives a generic class of polynomials whose gradient ideals are radical. As a consequence we reclaim a previous result that the unconstrained polynomial optimization problem for Morse polynomials has a finite convergence.

THE COMPUTATION METHOD OF THE MILNOR NUMBER OF HYPERSURFACE SINGULARITIES DEFINED BY AN IRREDUCIBLE WEIERSTRASS POLYNOMIAL $z^n$+a(x,y)z+b(x,y)=0 in $C^3$ AND ITS APPLICATION

  • Kang, Chung-Hyuk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.169-173
    • /
    • 1989
  • Let V={(x,y,z):f=z$^{n}$ -npz+(n-1)q=0 for n .geq. 3} be a compled analytic subvariety of a polydisc in $C^{3}$ where p=p(x,y) and q=q(x,y) are holomorphic near (x,y)=(0,0) and f is an irreducible Weierstrass polynomial in z of multiplicity n. Suppose that V has an isolated singular point at the origin. Recall that the z-discriminant of f is D(f)=c(p$^{n}$ -q$^{n-1}$) for some number c. Suppose that D(f) is square-free. then we prove that by Theorem 2.1 .mu.(p$^{n}$ -q$^{n-1}$)=.mu.(f)-(n-1)+n(n-2)I(p,q)+1 where .mu.(f), .mu. p$^{n}$ -q$^{n-1}$are the corresponding Milnor numbers of f, p$^{n}$ -q$^{n-1}$, respectively and I(p,q) is the intersection number of p and q at the origin. By one of applications suppose that W$_{t}$ ={(x,y,z):g$_{t}$ =z$^{n}$ -np$_{t}$ $^{n-1}$z+(n-1)q$_{t}$ $^{n-1}$=0} is a smooth family of complex analytic varieties near t=0 each of which has an isolated singularity at the origin, satisfying that the z-discriminant of g$_{t}$ , that is, D(g$_{t}$ ) is square-free. If .mu.(g$_{t}$ ) are constant near t=0, then we prove that the family of plane curves, D(g$_{t}$ ) are equisingular and also D(f$_{t}$ ) are equisingular near t=0 where f$_{t}$ =z$^{n}$ -np$_{t}$ z+(n-1)q$_{t}$ =0.}$ =0.

  • PDF