• Title/Summary/Keyword: Milling time

Search Result 665, Processing Time 0.035 seconds

Machining Time Reduction in Rough Machining of Sculptured Surface using Filleted End Mill (필렛 엔드밀을 이용한 자유곡면 황삭가공 시간단축)

  • 신동혁;김종일;김병희;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.15-19
    • /
    • 1996
  • The cusp height in ball end milling, flat end milling and filleted end milling according to various surface inclination angle was calculated. The calculation result shows that, for each kind of tools, there exists certain range of inclination angle in which cusp height characteristics favorable. From machining time calculation, filleted end mill found to be superior to flat end mill in rough machining of sculptured surface.

  • PDF

Piezoelectric properties of PNW-PMN-PZT ceramics for High power Piezoelectric transformer with Manufacturing process (고출력 압전트랜스포머용 PNW-PMN-PZT 세라믹스의 제조 Process에 따른 압전 특성)

  • 황상모;이정선;류주현;박창엽;김종선;유충식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.238-241
    • /
    • 2000
  • In this paper, we manufactured Pb($Ni_{1/2}$ $W_{1/2}$)$O_3$-Pb($Mn_{1/3}$$Nb_{2/3}$)$O_3$-Pb($Zr_3$Ti)$O_3$ceramics with variation of milling time and investigated its dielectric and piezoelectric properties. Density was increased with the increase of milling time because the sinterability of specimens were improved with the decrease of particle size. The highest value of electromechanical coupling factor was 0.518 at milling time 5hour. The highest values of mechanical quality factor and dielectric constant were 1566, 1590 at milling time 4hour, respectively.

  • PDF

Characterization of the High Energy Milled Boron Precursor Powders in the Synthesis of $MgB_2$ Superconductor ($MgB_2$ 초전도체의 합성에 미치는 고에너지 밀링에 의한 초기 보론 분말의 특성)

  • Lee, J.H.;Shin, S.Y.;Kim, C.J.;Park, H.W.
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.74-79
    • /
    • 2007
  • We characterized the highly refined boron precursor powders which were attrition milled for different milling times. $MgB_2$ powder precursor was formed from elemental crystalline Mg and amorphous B powder. The microstructure was investigated by SEM. SEM results indicate that the size of the milled powders was reduced with increasing milling time, which were varied from 0 to 8 hours. We also studied thermal behavior of the starting precursor by DSC as a function of milling time. The thermal behavior of the powder precursors was influenced by milling time. In order to determine the thermal events at DSC peaks, we annealed the milled powder mixture at $600^{\circ}C$ and $650^{\circ}C$ under protective gas and then analyzed the formation of $MgB_2$ by the XRD. We observed that superconducting $MgB_2$ phase was formed at lower temperature by the longer high energy milling. These results show that the high energy milling of the boron precursor powder can improve the reactivity for the formation of $MgB_2$.

  • PDF

Effects of the Mixing of an Active Material and a Conductive Additive on the Electric Double Layer Capacitor Performance in Organic Electrolyte

  • Yang, Inchan;Kwon, Soon Hyung;Kim, Bum-Soo;Kim, Sang-Gil;Lee, Byung-Jun;Kim, Myung-Soo;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.132-137
    • /
    • 2015
  • The effects of the mixing of an active material and a conductive additive on the electrochemical performance of an electric double layer capacitor (EDLC) electrode were investigated. Coin-type EDLC cells with an organic electrolyte were fabricated using the electrode samples with different ball-milling times for the mixing of an active material and a conductive additive. The ball-milling time had a strong influence on the electrochemical performance of the EDLC electrode. The homogeneous mixing of the active material and the conductive additive by ball-milling was very important to obtain an efficient EDLC electrode. However, an EDLC electrode with an excessive ball-milling time displayed low electrical conductivity due to the characteristic change of a conductive additive, leading to poor electrochemical performance. The mixing of an active material and a conductive additive played a crucial role in determining the electrochemical performance of EDLC electrode. The optimal ball-milling time contributed to a homogeneous mixing of an active material and a conductive additive, leading to good electrochemical performance of the EDLC electrode.

The Effect of Ball-Milling of Elemental Powders on Ni-Al Based Intermetallic Coatings using the Heat of Molten Cast Iron (주철의 용탕열을 이용한 Ni-Al계 금속간화합물의 연소합성 코팅에 미치는 Ball Milling의 영향)

  • Lee, Han-Young;Cho, Yong-Jae;Kim, Tae-Jun;Bang, Hee-Jang
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.28-33
    • /
    • 2012
  • Ball-milled Ni-Al powder compacts have been synthesized by the heat of molten cast iron and have been coated on cast iron. The effects of the ball-milling time on the microstructure of the intermetallic coatings have been investigated. The experimental results showed that the ball-milled Ni-Al powder compacts were completely reacted and were successfully coated on the cast iron without re-melting the substrate. Densification of the coating layers was enhanced by increasing the ball-milling time. This might be attributed to the fact that the heat released during the intermetallic reaction was dispersed over a prolonged reaction time by the ball-milling of the elemental powders.

Effects of Ball Milling on the Hydrogen Sorption Properties of Zr57V36Fe7 Getter Alloy (Zr57V36Fe7게터합금의 수소흡수특성에 미치는 분쇄의 영향)

  • Park, Je-Shin;Suh, Chang-Youl;Shim, Gun-Choo;Kim, Won-Baek
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.116-122
    • /
    • 2006
  • The effects of milling time in argon and hydrogen atmospheres on the hydrogen sorption speed of a getter alloy, $Zr_{57}V_{36}Fe_{7}$, was studied. The hydrogen sorption speed of milled alloys was evaluated at room temperature. In argon, as the oxygen content increased with milling time, the hydrogen sorption speed decreased accordingly. In hydrogen, on the other hand, the oxygen content decreased at first with milling time but started increasing after 5 hrs of milling time. Similar to the case of argon, however, the hydrogen sorption speed changed exactly in the opposite direction with the oxygen content, exhibiting the maximum rate at 5 hrs. These results suggest that in both atmospheres the hydrogen sorption speeds are inversely related with the oxygen contents.

Effect of Milling Time and Addition of PCA on Austenite Stability of Fe-7%Mn Alloy (Fe-7%Mn 합금의 오스테나이트 안정성에 미치는 밀링 시간과 공정제어제 첨가 효과)

  • Oh, Seung-Jin;Shon, In-Jin;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.25 no.2
    • /
    • pp.126-131
    • /
    • 2018
  • In the present study, we investigate the effects of milling time and the addition of a process control agent (PCA) on the austenite stability of a nanocrystalline Fe-7%Mn alloy by XRD analysis and micrograph observation. Nanocrystalline Fe-7%Mn alloys samples are successfully fabricated by spark plasma sintering. The crystallite size of ball-milled powder and the volume fraction of austenite in the sintered sample are calculated using XRD analysis. Changes in the shape and structure of alloyed powder according to milling conditions are observed through FE-SEM. It is found that the crystallite size is reduced with increasing milling time and amount of PCA addition due to the variation in the balance between the cold-welding and fracturing processes. As a result, the austenite stability increased, resulting in an exceptionally high volume fraction of austenite retained at room temperature.

Application of Design of Experiment Optimum Working Condition in Flat End-Milling (평면 엔드밀의 최적 가공조건을 위한 실험계획법의 적용)

  • Lee, Sang-Jae;Bae, Hyo-Jun;Seo, Young-Baek;Park, Heung-Sik;Jun, Tae-Ok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.20-25
    • /
    • 2003
  • The End-milling has been widely used in the industrial world because it is effective to cutting working with various shape. Recently the end-milling is demanded the high-precise technique with good surface roughness and rapid manufacturing time for precision machine and electronic elements. The cutting working of end-milling such as, cutting direction, revolution of spindle, feed rate and depth of cut have an effect on optimum surface roughness. This study was carried out to decide the working condition for optimum surface roughness and rapid manufacturing time by design of experiment and ANOVA. From the results of this study, the optimum working condition for end milling is upward cutting in cutting direction, 600rpm in revolution of spindle, 240mm/mm in feed rate, 2mm in axial depth of cut and 0 25mm in radial depth of cut. The design of experiment has become an useful method to select optimum working condition mend-milling.

  • PDF

Characterisrics of the Ag System Insert Metal Produced by Powder Mixing Process (분말 혼합 공정으로 만들어진 은계 삽입금속의 특성)

  • Kim, Gwang-Soo;Kim, Sang-Duck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.311-316
    • /
    • 2008
  • Powder type Ag system insert metals were manufactured by ball milling process. The variables of milling process were constant except the milling time. The milling times were selected for 24, 48 and 72 hours. The insert metals made by milling process were evaluated by performing scanning electron microscope, DSC(differential scanning calorimetry) analyses, spreading test and further in terms of wettability test. The selected insert metals that have the good characteristics compared to commercial insert metals were applied to make the brazed joints. The characterizations of those brazed joints were also conducted by microstructural observations. The results indicated that milling time of 48 hours for making powder type insert metals was the best condition showing the good spreadibility, low wetting angle. The brazed joints that applied the 48 hours milled insert metal were very sound condition indicating the stable microstructure in spite of containing small amount of porosity and the microhardness value of the joint was about 138VHN.

Effect of Process Parameters on Microstructure and Magnetic Properties of Sm-Co Alloy Powder Prepared by High Energy Ball Milling (고에너지 볼밀링된 Sm-Co 합금 분말의 미세조직 및 자성특성에 미치는 공정변수의 영향)

  • Kim, Bo-Sik;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.130-135
    • /
    • 2010
  • Sm-16.7wt%Co alloy powders were prepared by high energy ball milling under the conditions of various milling time and the content of process control agent (PCA), and their microstructure and magnetic properties were investigated to establish optimum processing conditions. The initial powders employed showed irregular shape and had a size ranging from 5 to $110\;{\mu}m$. After milling for 5 h, the shape of powders changed to round shape and their mean powder size was approximately $5\;{\mu}m$, which consisted of the agglomerated nano-sized particles with 15 nm in diameter. The coercivity was reduced with increasing the milling time, whereas the saturation magnetization increased. As the content of PCA increased, the powder size minutely decreased to approximately $7\;{\mu}m$ at the PCA content of 10 wt%. The XRD patterns showed that the main diffraction peaks disappeared apparently after milling, indicating the formation of amorphous structure. The measured values of coercivity were almost unchanged with increasing the content of PCA.