• Title/Summary/Keyword: Milling spindle

Search Result 142, Processing Time 0.035 seconds

Selecting Position of Bearings to Improve Dynamic Characteristics of A High-speed Milling Spindle (고속 주축의 진동 특성 향상을 위한 베어링의 위치 선정)

  • Lim J.S.;Hwang Y.K.;Lee W.C.;Lee C.M.;Chung W.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.865-868
    • /
    • 2005
  • This paper presents analysis of dynamic characteristics of a high-speed milling spindle with a built-in motor. The spindle system with a built-in motor can be used to simplify the structure of machine tools. to improve tire machining flexibility of machine. tools, and to perform the high speed machining. In this system the shaft is usually assumed as a rigid rotor. In the spindle system design, it is very important to improve modal characteristics, and modal analysis is performed in the first place. Therefore in this paper, on the assumption that supporting bearings of spindle was selected most suitable condition, analyzed dynamic characteristics of a high-speed spindle according to its position. Optimal design was applicated to select most suitable position of bearings. Considered tile mass and stiffness effects of the built-in motor's rotor are analyzed by numerical method. The result shows the natural frequency of 1st bending mode of spindle.

  • PDF

Optimum Working Condition of Surface Roughness for End-Milling Using Taguchi Design (다구찌 기법을 이용한 엔드밀 가공시 최적 표면거칠기를 위한 가공조건선정)

  • 이상재;배효준;전태옥;박흥식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.553-556
    • /
    • 2003
  • End-milling have been used in the industrial world because it is very effective to the manufacture of mechanical parts with various shape. Recently the end-milling processing is needed the high-precise technique with good surface roughness and rapid time in aircraft, automobile part and molding industry. Therefore this study carried to decide the optimum cutting condition for surface roughness and rapid manufacturing time using design of experiment and ANOVA. From the results of experimentation, surface roughness have an effect on cutting direction, spindle speed and depth of cut. And then the optimum condition used Taguchi design is upward cutting in cutting direction, 600rpm in spindle speed, 240mm/min feed rate, 2mm in axial depth of cut and 0.25mm radial depth of cut. By using design of experiment, it is effectively represented shape characteristics of working surface in end-milling.

  • PDF

Prediction of Surface Topography by Dynamic Model in High Speed End Milling (고속 엔드밀 가공시 동적 모델에 의한 표면형상 예측)

  • Lee, Gi-Yong;Ha, Geon-Ho;Gang, Myeong-Chang;Lee, Deuk-U;Kim, Jeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1681-1688
    • /
    • 2000
  • A dynamic model for the prediction of surface topography in high speed end milling process is developed. In this model the effect of tool runout, tool deflection and spindle vibration were taken in to account. An equivalent diameter of end mill is obtained by finite element method and tool deflection experiment. A modal parameter of machine tool is extracted by using frequency response function. The tool deflection, spindle vibration chip thickness and cutting force were calculated in dynamic cutting condition. The tooth pass is calculated at the current angular position for each point of contact between the tool and the workpiece. The new dynamic model for surface predition are compared with several investigated model. It is shown that new dynamic model is more effective to predict surface topography than other suggested models. In high speed end milling, the tool vibration has more effect on surface topography than the tool deflection.

On-line Cutting Force Estimation by N[ensuring Spindle Displacement in High-Speed Milling Process (고속 밀링 가공 시 주축 변위 측정을 통한 절삭력의 실시간 감시)

  • Kim J.H.;Kim J.H.;Kim I.H.;Ahn H.J.;Jang D.Y.;Han D.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.133-134
    • /
    • 2006
  • A cylindrical capacitive displacement sensor (CCS) was developed and applied for monitoring end milling processes. Dynamic characteristics of a spindle-assembly were measured using the CCS and a designed magnetic exciter. The technique to extract the spindle displacement component caused only by cutting from the measured signals using the CCS was proposed in the paper. Using CCS signals and FRF (Frequency Response Function) derived from dynamics of the spindle tool system, dynamic cutting forces are estimated quantitatively.

  • PDF

HIGH-SPEED MILLING FOR DIE AND MOLD MAKING

  • Na, T.kagawa
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.51-60
    • /
    • 2000
  • High-speed milling machine is being sold mainly in the market of die and mold industries, because it reduces machining time greatly as proportion to the spindle speed of machine tool. From the experimental milling tests, it has been cleared that the ball end mill is quite suitable for high speed milling and also tool wear reduces in higher speed milling condition. And a new milling concept with ultra high speed over 100, 000 rpm is proposed for solving the various problems such as NC cutter path generation and NC feed conformity etc.

  • PDF

Application of Design of Experiment Optimum Working Condition in Flat End-Milling (평면 엔드밀의 최적 가공조건을 위한 실험계획법의 적용)

  • Lee, Sang-Jae;Bae, Hyo-Jun;Seo, Young-Baek;Park, Heung-Sik;Jun, Tae-Ok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.20-25
    • /
    • 2003
  • The End-milling has been widely used in the industrial world because it is effective to cutting working with various shape. Recently the end-milling is demanded the high-precise technique with good surface roughness and rapid manufacturing time for precision machine and electronic elements. The cutting working of end-milling such as, cutting direction, revolution of spindle, feed rate and depth of cut have an effect on optimum surface roughness. This study was carried out to decide the working condition for optimum surface roughness and rapid manufacturing time by design of experiment and ANOVA. From the results of this study, the optimum working condition for end milling is upward cutting in cutting direction, 600rpm in revolution of spindle, 240mm/mm in feed rate, 2mm in axial depth of cut and 0 25mm in radial depth of cut. The design of experiment has become an useful method to select optimum working condition mend-milling.

  • PDF

Milling Chatter Stability Analysis in Consideration of Gyroscopic Effect (자이로 스코프 효과를 고려한 밀링 채터 안정성 해석)

  • 박재현;홍성욱;김현수;박중윤
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.58-63
    • /
    • 2000
  • The dynamics of spindle-bearing-workpiece system significantly affects the cutting condition and stability in milling process. The present paper investigates the chatter stability of milling process due to the change in the dynamics of spindle-bearing-workpiece systems. In particular, the present paper focuses on chatter stability due to the presence of gyroscopic effect. An eigenvalue problem approach to the stability of milling process is extensively used in this paper. To incorporate the rotational speed dependent gyroscopic effect, an iterative algorithm is proposed. A numerical example is provided for examining the chatter stability problem in the presence of gyroscopic effects.

  • PDF

Cutting Force Estimation and Feedrate Adaptive Control Using Spindle Motor Current (주축전류신호를 이용한 절삭력의 추정과 이송속도 적응제어)

  • 김기대;이성일;권원태;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.150-156
    • /
    • 1996
  • Static variations of cutting forces are estimated using spindle motor current. Static sensitivity of spindle motor current is higher than feed motor current. The linear relationship between the cutting force and RMS value of the spindle motor current is obtained. Using cutting force estimation, tool overload in milling process can be well detected, and cutting force is regulated at a constant level by feedrate adaptive control.

  • PDF

Diagnosis of Cutting Stability of Portable Automatic Beveling Machine Using Spindle Motor Current (주축 모터를 이용한 포터블 자동 면취기의 가공 안정성 진단)

  • Kim, Tae Young;An, Byeong Hun;Kim, Hwa Young
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.57-63
    • /
    • 2022
  • This study describes a system that monitors the tool and cutting state of automatic beveling operation in real time. As a signal for cutting state monitoring, a motor current detected from the spindle drive system of the automatic beveling machine is used to monitor abnormal state. Because automatic beveling is processed using a face milling cutter, the cutting force mechanism is the same as the milling process. The predicted cutting torque is obtained using a cutting force model based on specific cutting resistance. Then, the predicted cutting torque is converted into the spindle motor current value, and cutting state stability is diagnosed by comparing it with the motor current value detected during beveling operation. The experimental results show that the spindle motor current can detect abnormal cutting state such as overload and tool wear during beveling operation, and can diagnose the cutting stability using the proposed equip-current line diagram.

Development of Calibrating Instrument for Tool Wear using Spindle Orientation Function in End Milling (엔드밀 가공시 주축 오리엔테이션 기능을 통한 공구마멸 보정 장치의 개발)

  • Kim, Jeon-Ha;Kang, Myung-Chang;Kim, Jeong-Suk;Kim, Kwang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1095-1102
    • /
    • 2003
  • The most important thing in measuring the tool wear is to set up the measurement base. The end mill that is being used for machining of die is difficult to set up the base and to measure the tool wear because of geometric properties of that such as a helix and relief angle. In this study, a new instrument using spindle orientation function in end milling is developed to measure the tool wear and evaluated by the measuring system on the machine. Finally, this new method makes possible the wear measurement of same position and reduces the measuring time compared with the measuring methods such as the microscope and CCD.