• Title/Summary/Keyword: Milling cutter

Search Result 165, Processing Time 0.037 seconds

A Numerical Simulation on Cutting Force and Surface Roughness of the Face Milling (수치해석법에 의한 면삭밀링 작업에서의 절삭력과 표면거칠기에 관한 연구)

  • 홍민성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.4
    • /
    • pp.16-24
    • /
    • 1995
  • The milling process is one of the most important metal removal processes in industry. due to the complexities inherent to the cutter insert geometry and the milling cutter kinematics, these processes leave an analytically difficult to predict texture on the machined surface's hills and valleys. The instantaneous uncut chip cross sectional area may be estimated by the relative position between the workpiece and the cutter inserts. Furthermore, since the cutting forces are proportional to the instantaneous uncut chip cross sectional area, the cutting forces in face milling operations can not be estimated easily. A new simulation program which is based upon the numerical method has been proposed to estimate the cutting force components, with the ability to predict the machined surface texture left by the face milling.

  • PDF

Determination of Cutting Orientation in Zigzag Milling Operationa: A Geometrical Approach;

  • Kim, Byeong Keuk;Park, Joon Young;Wee, Nam-Sook
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.186-194
    • /
    • 1997
  • This paper describes new methods to minimize the cutting time in zigzag milling operation of two dimensional polygonal surfaces. Previous works have been focused on mainly experimental approaches by considering some machining parameters such as, spindle speed, depth of cut, cutter traverse rate, cutter diameter, number of teeth, tool wear, life of tool, and so on. However, in this study, we considered two geometrical factors one by one in order to see the effect separately, which are the length of cut and the number of cutter traverse. In an N-sided concave or convex polygon, an algorithm has been developed which minimize the total length of cut. Also, a heuristic approach was used to minimize the number of cutter traverse.

  • PDF

A Study on Optimal Design of Face Milling Cutter Geometry(I) -With Respect to Cutting Force- (정면밀링커터의 최적설계에 대한 연구(1) -절삭력 중심으로-)

  • 김정현;김희술
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2211-2224
    • /
    • 1994
  • On face milling operation a new optimal cutter, which can minimize the resultant cutting forces, was designed from the cutting force model. Cutting experiments were carried out and the cutting forces of the new and conventional cutters were analyed in time and frequency domains. The resultant cutting forces were used as the objective function and cutter angles as the variables. A new optimal cutter design model which can minimize the resultant cutting forces under the constraints of variables was developed and its usefulness was proven. The cutting forces in feed direction of the newly designed cutter are reduced in comparison with those from the conventional cutter. The magnitudes of an insert frequency component of cutting force from the newly designed cutter are reduced than those from conventional cutter and the fluctuations of cutting force are also reduced.

NC End Milling Strategy of Triangulation-Based Curved Surface Model Using Steepest Directed Tree (최대경사방향 트리를 이용한 삼각형요소화 곡면모델의 NC 엔드밀링가공에 관한 연구)

  • 맹희영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2089-2104
    • /
    • 1995
  • A novel and efficient cutter path planning method for machining intricately shaped curved surfaces, called the steepest directed tree method, is presented. The curved surface is defined by triangular facets, the density and structure of which are determined by the intricacy and form accuracy of the surface. Geometrical form definition and recognition of the topological features are used to connect the nodes of the triangulated surface meshes for the successive and interconnected steepest pathways, which makes good use of end milling characteristics. The planetary cutter centers are determined to locate along smoothly changing paths and then the height values of the cutter are adjusted to avoid surface interference. Several machined examples of intersecting and intricate surfaces are presented to illustrate the benefits of the new approach. It is shown that due to more consistent geometry matching between cutter and surface(in comparison with the current CC Cartesian method) surface finish can be typically improved. Moreover, the material in concave fillets which is difficult to be removed by ball mills can be removed efficiently. The built-in positioning of cutter to avoid interference runs minutely in the sharp and discontinuous regions. The steepest upward movement of the cutter gives a stable dynamic cutting state and allows increase in the feedrate and spindle speed while remaining the stable cutting state.

Determination of Tool Orientation in 5-Axis Milling Using Potential Energy Method (포텐셜 에너지를 이용한 5축 NC 밀링의 공구방향 결정)

  • Cho, Inhaeng;Lee, Kunwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.161-167
    • /
    • 1996
  • In five-axis milling, optimal CL-data (cutter location data) should be generated to have advantages over three-axis milling in terms of accuracy and efficiency. This paper presents an algorithm for generating collision-free CL-data for five-axis milling using potential energy method. By virtually charging the cutter and part surfaces with static electricity, global collision as wells as local interference is eliminated. Additionally, machining efficiency is improved by minimizing the curvature difference between the part surface and tool swept surface at a CC-point (cutter contact point) simultaneously.

  • PDF

자유곡면 볼엔드 밀링공정에서 CUSP PATTERN 조정

  • 심충건;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.106-110
    • /
    • 2001
  • The ball-end milling process is widely used in the die/mold industries, and it is very suitable for the machining of free-form surfaces. However, this process is inherently inefficient process to compared with the end-milling or face milling process, since it relays upon the machining at the cutter/surface contact point. The machined part is the result of continuous point-to-point machining on the free-form surface. And cusps (or scallops) remain at the machined part along the cutter paths and they give the geometrical roughness of the workpiece. Thus, for the good geometrical roughness of the workpiece, it is required very tightly spaced cutter paths in this ball-endmilling process. However, with the tight cutter paths, the geometrical roughness of the workpiece is not regular on the workpiece since the cusp height is variable in the previously developed ISO-parametric or Cartesian machining methods. This paper suggests a method of tool path generation which makes the geometrical roughness of workpiece be constant through the machined surface. In this method, Ferguson Surface design Model is used and cusp height is derived from the instantaneous curvatures. And, to have constant cusp height, an increment of parameter u or v is estimated along the reference cutter path. In ball-end milling experiments, the cusp pattern was examined, and it was proved that the geometrical roughness could be regular by suggested tool path generation method.

Evaluation of Cutter Orientations in 5-Axis High Speed Milling of Turbine Blade (터빈블레이드의 5축 고속가공에서 최적가공경로의 선정)

  • Lim T. S.;Lee C. M.;Kim S. W.;Lee D. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.53-60
    • /
    • 2002
  • Recently, the development of aerospace and automobile industries brought new technological challenges, related to the growing complexity of products and new geometry models. High speed machining using 5-Axis milling machine is widely used for 3D sculptured surface parts. 5-axis milling of turbine blade generates the vibration, deflection and twisting caused from thin and cantilever shape. So, the surface roughness and the waviness of workpiece are not good. In this paper, The effects of cutter orientation and lead/tilt angle in 5-Axis high speed ball end-milling of turbine blade were investigated to improve the geometric accuracy and surface integrity. The experiments were performed at lead/tilt angle $15^{\circ}$ of workpiece with four cutter directions such as horizontal outward, horizontal inward, vertical outward, and vertical inward. Workpiece deflection, surface roughness and machined surface were measured with various cutter orientations such as cutting direction, and lead/tilt angle. The results show that when 5-axis machining of turbine blade, the best cutting strategy is horizontal inward direction with tilt angle. The results show that when 5-axis machining of turbine blade, the best cutting strategy is horizontal inward direction with tilt angle.

  • PDF

Effects of cutter runout on cutting forces during down-endmilling of Inconel718 (Inconel 718 하향 엔드밀링시 절삭력에 미치는 공구형상오차)

  • 이영문;양승한;장승일;백승기;이동식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.308-313
    • /
    • 2002
  • In end milling process, the undeformed chip section area and cutting forces vary periodically with phase change of the tool. However, the real undeformed chip section area deviates from the geometrically ideal one owing to cutter runout and tool shape error. In this study, a method of estimating the real undeformed chip section area which reflects cutter runout and tool shape error was presented during down end-milling of Inconel 715 using measure cutting forces. Contrary to the up-end milling the value of radial specific cutting resistance, $K_r$, becomes larger as the helix angle increases from $30^{\circ}$ to $40^{\circ}$ and it shows almost same value at $50^{\circ}$ The value of tangential specific cutting resistance, $K_t$ becomes larger as the helix angle increases same as in up-end milling, the $KK_r$, and $K_t$ values show a tendency to decrease with increase of the modified chip section area and this tendency is distinct with helix angle $40^{\circ}$.

  • PDF

A Study on Evaluation of Machinability using cuter Runout in Ball-end Milling (볼엔드밀 가공에서 런아웃 측정을 통한 가공성 평가에 관한 연구)

  • Kim, Byoung-Kook;Park, Hee-Bum;Lee, Deug-Woo;Kim, Jeong-Suk;Jung, Yoong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.35-44
    • /
    • 1999
  • The performance of interrupted cutting operations like milling is consideraly affected by cuter runout. In this study, cutter runout is selected as an important machining parameter for evaluation of machinability in ball-end milling and caused from misalignments of tool and holder, unbalanced mass of parts and tool deflection under machining. To evaluate the machinability due to cutter runout, the rotating accuracy of spindle, cutting force and surface roughness are measured. The rotating characteristics of spindle in each revolution speed were investigated by cutter runout in freeload. The predicted surface form of workpiece by measuring cutter runout data was compared with real surfaces. The results show that measuring runout with high response gap sensor is useful for studying the phenomenon of high-speed machining and the monitor surface form using in-process runout measurements in ball-end milling is possible.

  • PDF

A Study on the cutting forces prediction using machining theory in end milling (절삭이론을 이용한 엔드밀 가공에서의 절삭력 예측에 관한 연구)

  • Jung, Sung-Chan;Kim, Kug-Weon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.928-933
    • /
    • 2004
  • A new approach for modelling and simulation of the cutting forces in end milling processes is presented. In this approach, the cutting forces in end milling are modelled based on a predictive machining theory, in which the machining characteristic factors are predicted from input data of fundamental workpiece material properties, tool geometry and cutting conditions. In the model, each tooth of a end milling cutter is divided into a number of slices along the cutter axis. The cutting action of each of the slices is modelled as an oblique cutting process. For the first slice of each tooth, it is modelled as oblique cutting with end cutting edge effect, whereas the cutting actions of other slices are modelled as oblique cutting without end cutting edge effect. The cutting forces in the oblique cutting processes are predicted using a predictive machining theory. The total cutting forces acting on the cutter is obtained as the sum of the forces at all the cutting slices of all the teeth. A Windows-based simulation system for the cutting forces in end milling is developed using the model. Experimental milling tests have been conducted to verify the simulation system.

  • PDF