• Title/Summary/Keyword: Millimeter Wave Radar

Search Result 79, Processing Time 0.021 seconds

Design of 77 GHz Automotive Radar System (77 GHz 차량용 레이더 시스템 설계)

  • Nam, Hyeong-Ki;Kang, Hyun-Sang;Song, Ui-Jong;Cui, Chenglin;Kim, Seong-Kyun;Nam, Sang-Wook;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.9
    • /
    • pp.936-943
    • /
    • 2013
  • This work presents the design and measured results of the single channel automotive radar system for 76.5~77 GHz long range FMCW radar applications. The transmitter uses a commercial GaAs monolithic microwave integrated circuit(MMIC) and the receiver uses the down converter designed using 65 nm CMOS process. The output power of the transmitter is 10 dBm. The down converter chip can operate at low LO power as -8 dBm which is easily supplied from the transmitter output using a coupled line coupler. All MMICs are mounted on an aluminum jig which embeds the WR-10 waveguide. A microstrip to waveguide transition is designed to feed the embedded waveguide and finally high gain horn antennas. The overall size of the fabricated radar system is $80mm{\times}61mm{\times}21mm$. The radar system achieved an output power of 10 dBm, phase noise of -94 dBc/Hz at 1 MHz offset and a conversion gain of 12 dB.

Transition Structure Design of Wideband Double-sided Parallel-Stripline to Coplanar Stripline for Millimeter-wave Compact Radar System (밀리미터파 초소형 레이다용 광대역 DSPSL-CPS 전이구조 설계)

  • Kim, Young-Gon;Park, Chang-Hyun;Kim, Hong-Rak;Kwon, Jun-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.27-31
    • /
    • 2017
  • A high-performance wideband transition from double-sided parallel-stripline (DSPSL) to coplanar stripline (CPS) is proposed. This transition is designed by consideration of gradual field transformation and optimal impedance matching between DSPSL and CPS. Clear design guidelines of proposed transition are provided to determine the ground shape and the transition length. The fabricated transition exhibits less than 0.7 dB insertion loss per transition for frequencies from 6.2 to 18.2 GHz, and less than 1.25 dB insertion loss to over 30 GHz.

Two-Dimensional Entropy Minimizing Autofocusing of Millimeter-Wave (W-Band) FMCW SAR (밀리미터파(W 밴드) 탐색기용 FMCW SAR 영상의 2차원 엔트로피 최소 자동 초점 기법)

  • Park, Jaehyun;Chun, Joohwan;Lee, Hyukjung;Song, Sungchan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.316-319
    • /
    • 2018
  • To detect the ground moving target, forward-looking SAR images obtained from the FMCW radar can be exploited. However, the quality of the SAR image is deteriorated due to the turbulence or fluctuation because of the flight path condition during the missile movement. We herein propose an entropy-minimizing autofocus method to compensate the motion error of forward-looking SAR. In particular, owing to the geometry of the forward-looking SAR, the motion error affects the SAR image in the two-dimensional (2D) form (azimuth and time axis). Therefore, we suggest a 2D autofocus method for the motion compensation.

Aerosol Indirect Effect Studies derived from the Ground-based Remote Sensings (지상원격탐사를 이용한 에어러솔 간접효과 연구)

  • Kim Byung-Gon;Kwon Tae-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.2
    • /
    • pp.235-247
    • /
    • 2006
  • Aerosol indirect radiative forcing of climate change is considered the most uncertain forcing of climate change over the industrial period, despite numerous studies demonstrating such modification of cloud properties and several studies quantifying resulting changes in shortwave radiative fluxes. Detection of this effect is made difficult by the large inherent variability in cloud liquid water path (LWP): the dominant controlling influence of LWP on optical depth and albedo masks any aerosol influences. Here we have used ground-based remote sensing of cloud optical depth (${\tau}_c$) by narrowband radiometry and LWP by microwave radiometry to determine the dependence of optical depth on LWP, thereby permitting examination of aerosol influence. The method is limited to complete overcast conditions with liquid-phase single layer clouds, as determined mainly by millimeter wave cloud radar. The results demonstrate substantial (factor of 2) day-to-day variation in cloud drop effective radius at the ARM Southern Great Plains site that is weakly associated with variation in aerosol loading as characterized by light-scattering coefficient at the surface. The substantial scatter suggests the importance of meteorological influences on cloud drop size as well, which should be analyzed in the further intensive studies. Meanwhile, it is notable that the decrease in cloud drop effective radius results in marked increase in cloud albedo.

Development of Advanced Emergency Braking Algorithm for the enhanced longitudinal safety (종방향 안전도 향상을 위한 자동비상제동 알고리즘 개발)

  • Lee, Taeyoung;Yi, Kyongsu;Lee, Jaewan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.56-61
    • /
    • 2013
  • This paper presents a development of the Advanced Emergency Braking (AEB) Algorithm for passenger vehicles. The AEB is the system to slow the vehicle and mitigate the severity of an impact when a rear end collision probability is increased. To mitigate a rear end collision, the AEB comprises of a millimeter wave radar sensor, CCD camera and vehicle parameters of which are processed to judge the likelihood of a collision occurring. The main controller of the AEB algorithm is composed of the two control stage: upper and lower level controller. By using the collected obstacle information, the upper level controller of the main controller decides the control mode based not only on parametric division, but also on physical collision capability. The lower level controller determines warning level and braking level to maintain the longitudinal safety. To decide the braking level, Last Ponit To Brake and Steer (LPTB/LPTS) are compared with current driving statues. To demonstrate the control performance of the proposed AEBS algorithm's, closed-loop simulation of the AEBS was conducted by using the Matlab simlink and CarSim software.

Spectral Analysis Method to Eliminate Spurious in FMICW HRR Millimeter-Wave Seeker (주파수 변조 단속 지속파를 이용하는 고해상도 밀리미터파 탐색기의 스퓨리어스 제거를 위한 스펙트럼 분석 기법)

  • Yang, Hee-Seong;Chun, Joo-Hwan;Song, Sung-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.85-95
    • /
    • 2012
  • In this thesis, we develop a spectral analysis scheme to eliminate the spurious peaks generated in HRR Millimeterwave Seeker based on FMICW system. In contrast to FMCW system, FMICW system generates spurious peaks in the spectrum of its IF signal, caused by the periodic discontinuity of the signal. These peaks make the accuracy of the system depend on the previously estimated range if a band pass filter is utilized to eliminate them and noise floor go to high level if random interrupted sequence is utilized and in case of using staggering process, we must transmit several waveforms to obtain overlapped information. Using the spectral analysis one of the schemes such as IAA(Iterative Adaptive Approach) and SPICE(SemiParametric Iterative Covariance-based Estimation method) which were introduced recently, the spurious peaks can be eliminated effectively. In order to utilize IAA and SPICE, since we must distinguish between reliable data and unreliable data and only use reliable data, STFT(Short Time Fourier Transform) is applied to the distinguishment process.

One-Dimensional Radar Scattering Center for Target Recognition of Ground Target in W-Band Millimeter Wave Seeker Considering Missile Flight-Path Scenario (유도탄 조우 시나리오를 고려한 W-대역 밀리미터파 탐색기의 지상 표적 식별을 위한 1차원 산란점 추출에 관한 연구)

  • Park, Sungho;Kim, Jihyun;Woo, Seon-Keol;Kwon, Jun-Beom;Kim, Hong-Rak
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.982-992
    • /
    • 2017
  • In this paper, we introduce a method of selection for the optimal transmission polarization of a W-band seeker through the extraction of the one-dimensional scattering center of a ground tank target. We calculated the surface scattering and edge scattering using the shooting and bouncing ray tracing method of the CST A-solver. Based on 4-channel RCS data, using the one-dimensional RELAX algorithm, which is a kind of spectral estimation technique, scattering centers of ground targets were extracted. According to the changes in the polarization state and look angle, we compared and analyzed the scattering center results. Through simulation, we verified that the scattering center results can be applied when feature vectors are used for target recognition.

Multi-target Data Association Filter Based on Order Statistics for Millimeter-wave Automotive Radar (밀리미터파 대역 차량용 레이더를 위한 순서통계 기법을 이용한 다중표적의 데이터 연관 필터)

  • Lee, Moon-Sik;Kim, Yong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.5
    • /
    • pp.94-104
    • /
    • 2000
  • The accuracy and reliability of the target tracking is very critical issue in the design of automotive collision warning radar A significant problem in multi-target tracking (MTT) is the target-to-measurement data association If an incorrect measurement is associated with a target, the target could diverge the track and be prematurely terminated or cause other targets to also diverge the track. Most methods for target-to-measurement data association tend to coalesce neighboring targets Therefore, many algorithms have been developed to solve this data association problem. In this paper, a new multi-target data association method based on order statistics is described The new approaches. called the order statistics probabilistic data association (OSPDA) and the order statistics joint probabilistic data association (OSJPDA), are formulated using the association probabilities of the probabilistic data association (PDA) and the joint probabilistic data association (JPDA) filters, respectively Using the decision logic. an optimal or near optimal target-to-measurement data association is made A computer simulation of the proposed method in a heavy cluttered condition is given, including a comparison With the nearest-neighbor CNN). the PDA, and the JPDA filters, Simulation results show that the performances of the OSPDA filter and the OSJPDA filter are superior to those of the PDA filter and the JPDA filter in terms of tracking accuracy about 18% and 19%, respectively In addition, the proposed method is implemented using a developed digital signal processing (DSP) board which can be interfaced with the engine control unit (ECU) of car engine and with the d?xer through the controller area network (CAN)

  • PDF

High Efficiency Active Phased Array Antenna Based on Substrate Integrated Waveguide (기판집적 도파관(SIW)을 기반으로 하는 고효율 능동 위상 배열안테나)

  • Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.227-247
    • /
    • 2015
  • An X-band $8{\times}16$ dual-polarized active phased array antenna system has been implemented based on the substrate integrated waveguide(SIW) technology having low propagation loss, complete EM shielding, and high power handling characteristics. Compared with the microstrip case, 1 dB less is the measured insertion loss(0.65 dB) of the 16-way SIW power distribution network and doubled(3 dB improved) is the measured radiation efficiency(73 %) of the SIW sub-array($1{\times}16$) antenna element. These significant improvements of the power division loss and the radiation efficiency using the SIW, save more than 30 % of the total power consumption, in the active phased array antenna systems, through substantial reduction of the maximum output power(P1 dB) of the high power amplifiers. Using the X-band $8{\times}16$ dual-polarized active phased array antenna system fabricated by the SIW technology, the main radiation beam has been steered by 0, 5, 9, and 18 degrees in the accuracy of 2 degree maximum deviation by simply generating the theoretical control vectors. Performing thermal cycle and vacuum tests, we have found that the SIW array antenna system be eligible for the space environment qualification. We expect that the high efficiency SIW array antenna system be very effective for high performance radar systems, massive MIMO for 5G mobile systems, and various millimeter-wave systems(60 GHz WPAN, 77 GHz automotive radars, high speed digital transmission systems).