• Title/Summary/Keyword: Millimeter Wave (MMW)

Search Result 19, Processing Time 0.027 seconds

The Biologic Effect of Millimeter Wave Irradiation Followed to Photodynamic Therapy on the Tumor

  • Ahn, Jin-Chul;Lee, Chang-Sook;Chang, So-Young;Yoon, Sung-Chul
    • Biomedical Science Letters
    • /
    • v.17 no.1
    • /
    • pp.79-84
    • /
    • 2011
  • Photodynamic therapy consists of a photosensitizer, suitable light source and oxygen. The excitation of the photosensitizer at a cancer mass results in oxidation which would ultimately reduce the mass via apoptosis. Millimeter wave (MMW) therapy has also been known to be effective on cancer cell mass reduction, human cell regeneration and immunity enhancement among the Russian clinicians and scientists. In the present study, the two modalities were combined to achieve synergistic effects while reducing the administration dosage of the photosensitizer, photogem, thus minimizing the side effects. The CT-26 adenocarcinoma cell mass was implanted on mice and the tumors were exposed to a simple MMW irradiation or a combined treatment of MMW and PDT. The treatments continued for 4 weeks and the size of the tumor was measured continuously. The significant therapeutic result of MMW was not found during 4 weeks, preferably more cancer recurrence possibility after MMW irradiation was observed. The results of this study suggest that the combination of MMW irradiation and photodynamic treatment should not be recommended. The result of the MMW treatment alone, however, displayed suppressive effect on cancer cell proliferation for both in vitro and in vivo. The results of the present study suggest that the millimeter wave therapy deserves a further study.

TEST MODEL OF MILLIMETER-WAVE IMAGING RADIOMETER EQUIPMENT (MIRAE)

  • Lee, Ho-Jin;Kim, Won-Gyum;Seong, Jin-Taek;Kim, Dae-Suk;Na, Kyoung-Tae;Jung, Min-Kyoo;Chang, Yu-Shin;Kim, Soon-Tae;Kim, Yong-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.365-368
    • /
    • 2007
  • Millimeter-wave (MMW) imaging radiometer systems have an attractive advantage to obtain an image through low visibility weather conditions such as fog, clouds and light rain compared with visible and infrared imaging systems. Many countries have developed a various kinds of MMW imaging radiometers for the aim of low cost and high performance. In Korea, Millimeter-wave Imaging RAdiometer Equipment (MIRAE) has been developed since the end of 2006. Recently the development of some modules was finished for the test model. This paper describes the design and development of the MIRAE. In addition, the test results of its manufactured modules are presented.

  • PDF

Preliminary Simulation on Spaceborne Sparse Array Millimeter Wave Radar for GMTI

  • Kang, Xueyan;Zhang, Yunhua
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.322-327
    • /
    • 2010
  • Spaceborne sparse array radar for ground moving targets indication (GMTI) has outstanding advantage over full array radar for constructing ultra-large aperture. Rapid development of millimeter wave (MMW) technology make it possible for realizing MMW GMTI radar, which is much more sensitive to slow moving ground target. The paper presented the system model of a multi-carrier frequency sparse array MMW radar as well as preliminary simulation results, which showed future application of the system is very promising.

Conversion of Optical/Radio-frequency by Applying Optical Technology for Wireless and Ubiquitous Communication (무선 및 유비쿼터스 통신을 위한 광 기술 응용의 직접 광/RF 변환)

  • Park, Ki-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.133-138
    • /
    • 2008
  • A 50-60GHz continuous-wave(cw) millimeter-wave(MMW) was converted(generated) by applying optical technology for future wireless and ubiquitous communications. The optical power of 22.5mW was injected into optical waveguide in this experiment. The generated MMW signals were radiated in a millimeter waveguide and detected through a millimeter detector on the inside of a millimeter waveguide in this experiment. The spectral linewidth of the MMW signals was less than 1 kHz. The power fluctuation of the MMW was less than 1.2 dBm over 50-60 GHz range.

Thirty-two-tupling frequency millimeter-wave generation based on eight Mach-Zehnder modulators connected in parallel

  • Xinqiao Chen;Siyuan Dai;Zhihan Li;Wenyao Ba;Xu Chen
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.194-204
    • /
    • 2024
  • A new method is proposed to generate a 32-tupling frequency millimeter wave (MMW) with eight Mach-Zehnder modulators (MZMs) connected in parallel. Theoretical analyses and simulation experiments are conducted. The optical sideband suppression ratio (OSSR) of the obtained ±16th order optical sidebands are 61.54 dB and 61.42 dB, and the radio frequency spurious suppression ratios (RFSSRs) of the generated 32-tupling frequency MMW are 55.52 dB and 55.27 dB based on the theoretical analysis and simulation experiments, respectively; these outcomes verified the feasibility of the new method. The main parameters used to affect the stability of the generated signal are the modulation index and extinction ratio of MZM. Their effects on the OSSR and RFSSR of the generated signals are investigated when they deviate from their designed values. Compared with the other proposed methods for the generation of 32-tupling frequency MMW by MZM, our method has the best spectral purity and stability, and it is expected to have important MMW over fiber applications.

Stereo 3 mm Millimeter Wave Imaging for Distance Estimation to Concealed Objects (스테레오 3mm 밀리미터파 영상을 이용한 은닉물체의 거리추정에 관한 연구)

  • Yeom, Seokwon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.18 no.1
    • /
    • pp.21-24
    • /
    • 2017
  • Passive millimeter wave (MMW) imaging penetrates clothing to detect concealed objects. The distances extraction to the concealed objects is critical for the security and defense. In this paper, we address a passive stereo 3 mm MMW imaging system to extract the longitudinal distance to the concealed object. The concealed object area is segmented and extracted by the k-means clustering algorithm with splitting initialization. The distance to the concealed object is estimated by the corresponding centers of the segmented objects. In the experimental two pairs (each pair for horizontal and vertical polarization) of stereo MMW images are obtained to estimate distances to concealed objects.

  • PDF

A study on Real-time Graphic User Interface for Hidden Target Segmentation (은닉표적의 분할을 위한 실시간 Graphic User Interface 구현에 관한 연구)

  • Yeom, Seokwon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.17 no.2
    • /
    • pp.67-70
    • /
    • 2016
  • This paper discusses a graphic user interface(GUI) for the concealed target segmentation. The human subject hiding a metal gun is captured by the passive millimeter wave(MMW) imaging system. The imaging system operates on the regime of 8 mm wavelength. The MMW image is analyzed by the multi-level segmentation to segment and identify a concealed weapon under clothing. The histogram of the passive MMW image is modeled with the Gaussian mixture distribution. LBG vector quantization(VQ) and expectation and maximization(EM) algorithms are sequentially applied to segment the body and the object area. In the experiment, the GUI is implemented by the MFC(Microsoft Foundation Class) and the OpenCV(Computer Vision) libraries and tested in real-time showing the efficiency of the system.

Analysis of Performance employing Chromatic Dispersion in Millimeter-wave Links (밀리미터파 대역 링크에서 색 분산에 의한 성능 분석)

  • 김정태
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.309-312
    • /
    • 2000
  • In this paper, The Influence of chromatic fiber dispersion on the transmission distance of MMW(millimeter-wave) link is analyzed and discussed. It is shown that dispersion significantly limits the transmission distance in intensity modulated direct detection and heterodyne links operating in the above 20㎓ frequency region by inducing a carrier to noise penalty on the transmitted signal. We analyze and discuss the influence of dispersion induced CNR(Carrier to Noise Ratio) penalty for direct detection and heterodyne method from simulation.

  • PDF

Energy Detector based Time of Arrival Estimation using a Neural Network with Millimeter Wave Signals

  • Liang, Xiaolin;Zhang, Hao;Gulliver, T. Aaron
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3050-3065
    • /
    • 2016
  • Neural networks (NNs) are extensively used in applications requiring signal classification and regression analysis. In this paper, a NN based threshold selection algorithm for 60 GHz millimeter wave (MMW) time of arrival (TOA) estimation using an energy detector (ED) is proposed which is based on the skewness, kurtosis, and curl of the received energy block values. The best normalized threshold for a given signal-to-noise ratio (SNR) is determined, and the influence of the integration period and channel on the performance is investigated. Results are presented which show that the proposed NN based algorithm provides superior precision and better robustness than other ED based algorithms over a wide range of SNR values. Further, it is independent of the integration period and channel model.

Study on direct optical switching CDM at 40 GHz-band for Radio-over-Fiber(RoF) system (Radio-over-Fiber 시스템을 위한 40 GHz 대역에서 직접 광스위칭 CDMA 연구)

  • 최재원;전영민;변영태;우덕하;박종대;서동선
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.600-605
    • /
    • 2003
  • We have experimentally demonstrated a Direct Optical Switching (DOS) CDMA for future wide-band mobile communication systems at the 40 ㎓ band by using orthogonal (crosscorrelation $\leq$2) unipolar type codes with code length of 16 and chip rate of 2.5 Gcps for radio-over-fiber (RoF) systems. Pulse-amplitude-equalized 40 ㎓ laser pulses were provided by rational-harmonically mode-locking a 10 ㎓ fiber ring laser.