• 제목/요약/키워드: Milk yield traits

검색결과 113건 처리시간 0.025초

Effect of Butyrophilin Gene Polymorphism on Milk Quality Traits in Crossbred Cattle

  • Bhattacharya, T.K.;Misra, S.S.;Sheikh, Feroz D.;Sukla, Soumi;Kumar, Pushpendra;Sharma, Arjava
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권7호
    • /
    • pp.922-926
    • /
    • 2006
  • A genetic polymorphism study on butyrophilin gene was carried out to explore variability of this gene and to estimate effects of such variability on milk quality traits in crossbred cattle. Polymorphism was unraveled by conducting Hae III PCR-RFLP of this gene. Three genotypes such as AA, BB and AB and two alleles namely A and B were observed in crossbred population. The frequencies of genotypes and alleles were 0.78, 0.17 and 0.04 for AA, AB and BB genotypes, respectively, and 0.87 and 0.13 for A and B alleles, respectively. The nucleotides, which have been substituted from allele A to B, were observed as C to G ($71^{st}$ nucleotide), C to T ($86^{th}$ nucleotide), A to T ($217^{th}$ nucleotide), G to A ($258^{th}$ nucleotide), A to C ($371^{st}$ nucleotide) and C to T ($377^{th}$ nucleotide). The nucleotide substitutions at $71^{st}$, $86^{th}$ and $377^{th}$ position of the fragment were found as silent mutations whereas nucleotide changes at $217^{th}$, $258^{th}$ and $371^{st}$ positions were detected as substitution of amino acid lysine with arginine, valine with isoleucine, and leucine with proline from allele A to B. The genotypes had significant effects ($p{\leq}0.05$) on total milk solid%, fat%, SNF%, while showing nonsignificant impact on total protein%. AA genotype produced highest average yield for all the traits.

Genetic Parameters of Milk β-Hydroxybutyric Acid and Acetone and Their Genetic Association with Milk Production Traits of Holstein Cattle

  • Lee, SeokHyun;Cho, KwangHyun;Park, MiNa;Choi, TaeJung;Kim, SiDong;Do, ChangHee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권11호
    • /
    • pp.1530-1540
    • /
    • 2016
  • This study was conducted to estimate the genetic parameters of ${\beta}$-hydroxybutyrate (BHBA) and acetone concentration in milk by Fourier transform infrared spectroscopy along with test-day milk production traits including fat %, protein % and milk yield based on monthly samples of milk obtained as part of a routine milk recording program in Korea. Additionally, the feasibility of using such data in the official dairy cattle breeding system for selection of cows with low susceptibility of ketosis was evaluated. A total of 57,190 monthly test-day records for parities 1, 2, and 3 of 7,895 cows with pedigree information were collected from April 2012 to August 2014 from herds enrolled in the Korea Animal Improvement Association. Multi-trait random regression models were separately applied to estimate genetic parameters of test-day records for each parity. The model included fixed herd test-day effects, calving age and season effects, and random regressions for additive genetic and permanent environmental effects. Abundance of variation of acetone may provide a more sensitive indication of ketosis than many zero observations in concentration of milk BHBA. Heritabilities of milk BHBA levels ranged from 0.04 to 0.17 with a mean of 0.09 for the interval between 4 and 305 days in milk during three lactations. The average heritabilities for milk acetone concentration were 0.29, 0.29, and 0.22 for parities 1, 2, and 3, respectively. There was no clear genetic association of the concentration of two ketone bodies with three test-day milk production traits, even if some correlations among breeding values of the test-day records in this study were observed. These results suggest that genetic selection for low susceptibility of ketosis in early lactation is possible. Further, it is desirable for the breeding scheme of dairy cattle to include the records of milk acetone rather than the records of milk BHBA.

The Prediction of the Expected Current Selection Coefficient of Single Nucleotide Polymorphism Associated with Holstein Milk Yield, Fat and Protein Contents

  • Lee, Young-Sup;Shin, Donghyun;Lee, Wonseok;Taye, Mengistie;Cho, Kwanghyun;Park, Kyoung-Do;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권1호
    • /
    • pp.36-42
    • /
    • 2016
  • Milk-related traits (milk yield, fat and protein) have been crucial to selection of Holstein. It is essential to find the current selection trends of Holstein. Despite this, uncovering the current trends of selection have been ignored in previous studies. We suggest a new formula to detect the current selection trends based on single nucleotide polymorphisms (SNP). This suggestion is based on the best linear unbiased prediction (BLUP) and the Fisher's fundamental theorem of natural selection both of which are trait-dependent. Fisher's theorem links the additive genetic variance to the selection coefficient. For Holstein milk production traits, we estimated the additive genetic variance using SNP effect from BLUP and selection coefficients based on genetic variance to search highly selective SNPs. Through these processes, we identified significantly selective SNPs. The number of genes containing highly selective SNPs with p-value <0.01 (nearly top 1% SNPs) in all traits and p-value <0.001 (nearly top 0.1%) in any traits was 14. They are phosphodiesterase 4B (PDE4B), serine/threonine kinase 40 (STK40), collagen, type XI, alpha 1 (COL11A1), ephrin-A1 (EFNA1), netrin 4 (NTN4), neuron specific gene family member 1 (NSG1), estrogen receptor 1 (ESR1), neurexin 3 (NRXN3), spectrin, beta, non-erythrocytic 1 (SPTBN1), ADP-ribosylation factor interacting protein 1 (ARFIP1), mutL homolog 1 (MLH1), transmembrane channel-like 7 (TMC7), carboxypeptidase X, member 2 (CPXM2) and ADAM metallopeptidase domain 12 (ADAM12). These genes may be important for future artificial selection trends. Also, we found that the SNP effect predicted from BLUP was the key factor to determine the expected current selection coefficient of SNP. Under Hardy-Weinberg equilibrium of SNP markers in current generation, the selection coefficient is equivalent to $2^*SNP$ effect.

홀스타인의 유생산형질에 대한 유전모수 추정 (Estimation of Genetic Parameters for Milk Production Traits in Holstein Dairy Cattle)

  • 조충일;조광현;최연호;최재관;최태정;박병호;이승수
    • Journal of Animal Science and Technology
    • /
    • 제55권1호
    • /
    • pp.7-11
    • /
    • 2013
  • 본 연구의 목적은 여러 산차를 이용한 모델을 사용하여 유전평가 분석을 하기위하여 3개의 유량생산 형질에 대한 (공)분산 성분을 추정하고자 하였다. 모수추정을 위한 자료는 2001년부터 2009년까지의 검정자료를 이용하였고 원시자료수는 1,416,589개이며 5개의 산차형질에 대해 각각 다른 형질로 가정하여 추정하였다. 동기그룹 내 10두 이하 및 씨수소의 딸소가 10두 미만인 개체는 삭제를 하였으며 305일 유량생산이 15,000 kg을 초과하는 비유개체에 대하여 사전 데이터 가공을 실시하였다. 혈통파일은 총292,382개의 혈통자료와 1,456두의 씨수소로 구성되어진 혈통자료가 연구에 사용되었다. Sire 모형은 herd-year-season의 동기그룹과 분만월령 그리고 혈통과 5산까지 상가적 유전효과들이 적용되었으며 VCE를 이용하여 유전 (공)분산이 추정되었다. 유전율과 유전상과 그리고 잔차상관은 R 패키지를 이용하여 계산하였다. 유량에 대한 산차간 유전 상관은 0.76에서 0.98였고, 유지방량은 0.79~0.10, 유단백질량은 0.75~1.00로 나타났다. 각 산차별 유량, 유지방량, 유단백질량은 상대적으로 낮은 유전력인 0.14~0.23, 0.13~0.20이 추정되었으며 산차에 가중치로 결합된 유전력은 각 형질에서 0.29, 0.28, 0.26로 나타났다. 본 연구에서 추정된 모수들은 국가단위 유전평가분석에 사용될 수 있을 것으로 판단된다.

Efficiency of Different Selection Indices for Desired Gain in Reproduction and Production Traits in Hariana Cattle

  • Kaushik, Ravinder;Khanna, A.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권6호
    • /
    • pp.789-793
    • /
    • 2003
  • An investigation was conducted on 729 Hariana cows maintained at Government Livestock Farm, Hisar, from 1973 to 1999, with an objective to compare the efficiency of various selection indices for attaining desired genetic gains in the index traits. The various traits included were age at first calving (AFC), service period (SP), calving interval (CI), days to first service (DFS), number of services per conception (NSPC), lactation milk yield (LY), peak yield (PY), dry period (DP). Except for LY, PY and AFC the heritabilities of all other traits were low. Desirable associations among reproductive traits are supportive of the fact that any one of these traits incorporated in simultaneous selection is expected to cause correlated response in other traits. Production traits (LY and PY) were positively correlated, while DP had low negative genetic correlation with LY, and high genetic correlation with PY. Thus, DP can be taken as additional criteria in selection index for better over all improvement. Almost all production traits except DP had low negative correlation with AFC, SP, DFS and CI meaning that reduction in reproduction traits up to certain level may increase production performance. While, the correlation of NSPC with LY and PY was moderate positive. Among four trait indices I23: incorporating PY, AFC, SP and NSPC and among three trait indices I1: incorporating LY, AFC and SP were the best as these required least number of generations (4.87 and 1.35, respectively) to attain desired goals. Next in order of preference were PY or LY along with DP and SP as the best indices (I20 and I16) of which, index with PY may be preferred instead of LY as it produced considerably high correlated response in LY and reduction in NSPC as well.

Welfare assessment traits, milk quantity and quality, and profitability of Anatolian buffalo cows confined in closed-tied or semi-open free-stall barns can be affected by supplementary feeding at milking

  • Ibrahim Cihangir Okuyucu;Ahmet Akdag;Huseyin Erdem;Canan Kop-Bozbay;Samet Hasan Abaci;Ali Vaiz Garipoglu;Esin Hazneci;Nuh Ocak
    • Animal Bioscience
    • /
    • 제37권6호
    • /
    • pp.1110-1120
    • /
    • 2024
  • Objective: This study was conducted to evaluate the effect of offering (OSF) or not (NSF) supplemental feed at milking on temperament (TS), udder hygiene (UHS) and body condition (BCS) scores, and milk yield per milking (MYM), milk quality traits, and profitability of primiparous Anatolian buffalo cows at 90 days of lactation confined in closed-tied (CB) or semi-open free-stall (OB) barns. Methods: In Experiment I, 108 cows were selected to encompass four treatments (OBOSF, OB-NSF, CB-OSF, and CB-NSF) of 27 cows, considering barn type (OB and CB) and supplementary feed (OSF and NSF) at milking. In Experiment II, 60 OB cows were selected to encompass one of five groups of 12 cows each: i) no supplemental feed (CON), ii) commercial concentrate (CC), iii) CC + corn silage (CCS), iv) CCS + alfalfa hay (CSA), or v) CC + ryegrass silage (CRS) at milking. Results: The TS and UHS of the OB and OSF cows were lower (better) than those of the CB and NSF cows, respectively. The OSF increased milk protein, lactose, and solids-not-fat but decreased milk freezing point and electrical conductivity compared with the NSF. The MYM and milk fat of the OB-OSF cows were higher than those of the OB-NSF and CBNSF cows. The TS and UHS of the cows negatively correlated with MYM and some milk chemicals (fat, protein, and solids-not-fat), but BCS correlated positively. The TS and milk electrical conductivity of the CCS, CSA, and CRS cows were lower than those of the CON and CC cows, but BCS, MYM, and milk fat were higher. Partial budget analysis identified a higher net profit for supplemental feed-offered groups (OB-OSF, CCS, CSA, and CRS). Conclusion: Offering roughage with concentrates at milking for indoor primiparous buffalo cows is more conducive to well-being, milk yield, milk quality, and economy.

Genetic factors influencing milk and fat yields in tropically adapted dairy cattle: insights from quantitative trait loci analysis and gene associations

  • Thawee Laodim;Skorn Koonawootrittriron;Mauricio A. Elzo;Thanathip Suwanasopee;Danai Jattawa;Mattaneeya Sarakul
    • Animal Bioscience
    • /
    • 제37권4호
    • /
    • pp.576-590
    • /
    • 2024
  • Objective: The objective of this study was to identify genes associated with 305-day milk yield (MY) and fat yield (FY) that also influence the adaptability of the Thai multibreed dairy cattle population to tropical conditions. Methods: A total of 75,776 imputed and actual single nucleotide polymorphisms (SNPs) from 2,661 animals were used to identify genomic regions associated with MY and FY using the single-step genomic best linear unbiased predictions. Fixed effects included herd-year-season, breed regression, heterosis regression and calving age regression effects. Random effects were animal additive genetic and residual. Individual SNPs with a p-value smaller than 0.05 were selected for gene mapping, function analysis, and quantitative trait loci (QTL) annotation analysis. Results: A substantial number of QTLs associated with MY (9,334) and FY (8,977) were identified by integrating SNP genotypes and QTL annotations. Notably, we discovered 17 annotated QTLs within the health and exterior QTL classes, corresponding to nine unique genes. Among these genes, Rho GTPase activating protein 15 (ARHGAP15) and catenin alpha 2 (CTNNA2) have previously been linked to physiological traits associated with tropical adaptation in various cattle breeds. Interestingly, these two genes also showed signs of positive selection, indicating their potential role in conferring tolerance to trypanosomiasis, a prevalent tropical disease. Conclusion: Our findings provide valuable insights into the genetic basis of MY and FY in the Thai multibreed dairy cattle population, shedding light on the underlying mechanisms of tropical adaptation. The identified genes represent promising targets for future breeding strategies aimed at improving milk and fat production while ensuring resilience to tropical challenges. This study significantly contributes to our understanding of the genetic factors influencing milk production and adaptability in dairy cattle, facilitating the development of sustainable genetic selection strategies and breeding programs in tropical environments.

The effectiveness of genomic selection for milk production traits of Holstein dairy cattle

  • Lee, Yun-Mi;Dang, Chang-Gwon;Alam, Mohammad Z.;Kim, You-Sam;Cho, Kwang-Hyeon;Park, Kyung-Do;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권3호
    • /
    • pp.382-389
    • /
    • 2020
  • Objective: This study was conducted to test the efficiency of genomic selection for milk production traits in a Korean Holstein cattle population. Methods: A total of 506,481 milk production records from 293,855 animals (2,090 heads with single nucleotide polymorphism information) were used to estimate breeding value by single step best linear unbiased prediction. Results: The heritability estimates for milk, fat, and protein yields in the first parity were 0.28, 0.26, and 0.23, respectively. As the parity increased, the heritability decreased for all milk production traits. The estimated generation intervals of sire for the production of bulls (LSB) and that for the production of cows (LSC) were 7.9 and 8.1 years, respectively, and the estimated generation intervals of dams for the production of bulls (LDB) and cows (LDC) were 4.9 and 4.2 years, respectively. In the overall data set, the reliability of genomic estimated breeding value (GEBV) increased by 9% on average over that of estimated breeding value (EBV), and increased by 7% in cows with test records, about 4% in bulls with progeny records, and 13% in heifers without test records. The difference in the reliability between GEBV and EBV was especially significant for the data from young bulls, i.e. 17% on average for milk (39% vs 22%), fat (39% vs 22%), and protein (37% vs 22%) yields, respectively. When selected for the milk yield using GEBV, the genetic gain increased about 7.1% over the gain with the EBV in the cows with test records, and by 2.9% in bulls with progeny records, while the genetic gain increased by about 24.2% in heifers without test records and by 35% in young bulls without progeny records. Conclusion: More genetic gains can be expected through the use of GEBV than EBV, and genomic selection was more effective in the selection of young bulls and heifers without test records.

Comparative study on production, reproduction and functional traits between Fleckvieh and Braunvieh cattle

  • Cziszter, Ludovic-Toma;Ilie, Daniela-Elena;Neamt, Radu-Ionel;Neciu, Florin-Cristian;Saplacan, Silviu-Ilie;Gavojdian, Dinu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권5호
    • /
    • pp.666-671
    • /
    • 2017
  • Objective: Aim of the current comparative study was to evaluate production outputs, reproduction efficiency and functional traits in dual-purpose Fleckvieh and Braunvieh cows, reared under temperate European conditions. Methods: A data-set from 414 Fleckvieh and 42 Braunvieh cows and 799 lactations was analysed. ID tag number, milk yield per milking session, number of steps/interval and milk conductivity were recorded and collected daily using AfiMilk 3.076 A-DU software (Afimilk Ltd., Kibbutz, Israel). Production and milk quality data were taken from the results of the official performance recordings and the reproductive outputs of cows were recorded by the research stations veterinarians. Comparisons between the two genotypes were carried out using the one way analysis of variance protocol, with categorical factor being considered the breed of cows. All the statistical inferences were carried out using Statistica software (StatSoft Inc., Tulsa, OK, USA). Results: Fleckvieh cows significantly outperformed ($p{\leq}0.05$) the Braunvieh herd, with average milk yields of $5,252.1{\pm}35.79kg$ and $4,897.6{\pm}128.94kg$, respectively. Age at first calving was significantly ($p{\leq}0.01$) influenced by the breed, with Fleckvieh heifers being more precocious ($32.8{\pm}0.29mo$) compared to those of Braunvieh breed ($35.7{\pm}0.84mo$). Reproduction efficiency as defined by the number of inseminations per gestation, calving interval, dystocia, days dry and days open, was not influenced by genotype (p>0.05). Incidences of sub-clinical mastitis, clinical mastitis, lameness and abortions were not influenced by the breed factor (p>0.05). Stay-ability of cows was significantly ($p{\leq}0.001$) influenced by genotype, with Braunvieh cows having an average age at culling of $117.88{\pm}11.78$ months compared to $90.88{\pm}2.89$ months in Fleckvieh. Conclusion: Overall, results have shown that genotype significantly influenced milk yield, age at first calving and longevity.

Single nucleotide polymorphisms in candidate genes associated with milk yield in Argentinean Holstein and Holstein × Jersey cows

  • Raschia, Maria Agustina;Nani, Juan Pablo;Maizon, Daniel Omar;Beribe, Maria Jose;Amadio, Ariel Fernando;Poli, Mario Andres
    • Journal of Animal Science and Technology
    • /
    • 제60권12호
    • /
    • pp.31.1-31.10
    • /
    • 2018
  • Background: Research on loci influencing milk production traits of dairy cattle is one of the main topics of investigation in livestock. Many genomic regions and polymorphisms associated with dairy production have been reported worldwide. In this context, the purpose of this study was to identify candidate loci associated with milk yield in Argentinean dairy cattle. A database of candidate genes and single nucleotide polymorphisms (SNPs) for milk production and composition was developed. Thirty-nine SNPs belonging to 22 candidate genes were genotyped on 1643 animals (Holstein and Holstein x Jersey). The genotypes obtained were subjected to association studies considering the whole population and discriminating the population by Holstein breed percentage. Phenotypic data consisted of milk production values recorded during the first lactation of 1156 Holstein and 462 Holstein ${\times}$ Jersey cows from 18 dairy farms located in the central dairy area of Argentina. From these records, 305-day cumulative milk production values were predicted. Results: Eight SNPs (rs43375517, rs29004488, rs132812135, rs137651874, rs109191047, rs135164815, rs43706485, and rs41255693), located on six Bos taurus autosomes (BTA4, BTA6, BTA19, BTA20, BTA22, and BTA26), showed suggestive associations with 305-day cumulative milk production (under Benjamini-Hochberg procedure with a false discovery rate of 0.1). Two of those SNPs (rs43375517 and rs135164815) were significantly associated with milk production (Bonferroni adjusted p-values < 0.05) when considering the Holstein population. Conclusions: The results obtained are consistent with previously reported associations in other Holstein populations. Furthermore, the SNPs found to influence bovine milk production in this study may be used as possible candidate SNPs for marker-assisted selection programs in Argentinean dairy cattle.