• Title/Summary/Keyword: Milk Urea

Search Result 211, Processing Time 0.019 seconds

Effects of Urea Level and Sodium DL-malate in Concentrate Containing High Cassava Chip on Ruminal Fermentation Efficiency, Microbial Protein Synthesis in Lactating Dairy Cows Raised under Tropical Condition

  • Khampa, S.;Wanapat, Metha;Wachirapakorn, C.;Nontaso, N.;Wattiaux, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.6
    • /
    • pp.837-844
    • /
    • 2006
  • Four, lactating dairy cows were randomly assigned according to a $2{\times}2$ Factorial arrangement in a $4{\times}4$ Latin square design to study supplementation of urea level (U) at 2 and 4% and sodium dl-malate (M) at 10 and 20 g/hd/d in concentrate. The treatments were as follows U2M10, U2M20, U4M10 and U4M20, respectively. The cows were offered the treatment concentrate at a ratio to milk yield at 1:2.5 and urea-treated rice straw was fed ad libitum. The results have revealed that rumen fermentation and blood metabolites were similar for all treatments. The populations of protozoa and fungal zoospores were significantly different as affected by urea level and sodium dl-malate. In addition, the viable bacteria were similar for amylolytic and proteolytic bacteria. Cellulolytic bacteria were significantly affected by level of sodium dl-malate especially Selenomonas ruminantium and Megasphaera elsdenii while Butyrivibrio fibrisolvens was significantly affected by level of urea supplementation. In conclusion, the combined use of concentrate containing high level of cassava chip at 75% DM with urea at 4% in concentrate and sodium dl-malate at 20 g/hd/d with UTS as a roughage could improv rumen ecology and microbial protein synthesis efficiency in lactating dairy cows.

Studies on health management and nutritional evaluation by milk components analysis in Holstein cows IV. The relationship between milk composition from the first test within 35 days in milk and displaced abomasum in a large dairy herd of high yielding Holstein cows (젖소에서 유성분 분석을 통한 영양상태 평가 및 건강관리에 관한 연구 IV. 고능력우 위주의 대규모 목장에서 분만 후 첫 번째 유검정 성적과 제4위전위 질병과의 관련성)

  • Moon, Jin-san;Son, Chang-ho;Joo, Yi-seok;Kang, Hyun-mi;Jang, Gum-chan;Kim, Jong-man
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.3
    • /
    • pp.407-412
    • /
    • 2001
  • Milk data may be increasingly used as indicators of the protein-energy balance and actual farm feeding practices. It was related to milk production, nutritional and reproductive disorders. The purpose of this study was to investigate the relationship between level of fat, protein or milk urea nitrogen (MUN) from the first test within 35 days in milk and displaced abomasum (DA) in a large dairy herd with high yielding Holstein cows. Milk data from forty-five DA cases were compared to those from 90 healthy cows. Higher odds of DA diagnosis was found with higher 5.0% milk fat, lower 3.0% milk protein. Therefore, cows with a fat to protein ratio of>1.5 had higher risks for DA. Also, incidence rates of DA was higher in the cows which the level of MUN was lower than 12.0 mg/dl or higher than 25.0 mg/dl relative to healthy cows. These results indicate that cows diagnosed with DA were energy deficient prior to DA diagnosis. We conclude that level of fat, protein or MUN serve as a monitoring tool of protein and energy nutritional balance in early lactation cows and also as a significant predictor of risk for DA.

  • PDF

Effect of Recombinant Bovine Somatotropin (Boostin-250) on Blood Metabolites and Milk Yield of Lactating Buffaloes

  • Mishra, A.;Shukla, D.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.9
    • /
    • pp.1232-1235
    • /
    • 2004
  • In order to investigate the effect of recombinant bovine somatotropin (rbST) on blood metabolites and milk yield of lactating buffaloes, 30 lactating buffaloes after acclimatization for 30 days were divided into 2 groups as control (n=10) and experimental (n=20). Animals were injected 250mg of rbST (Boostin-250) on 0, $14^{th}$ and $28^{th}$ day subcutaneously at ischiorectal fosse, where as control animals were given placebo of 2 ml normal saline. Fortnightly blood samples were collected from 15 days prior to 60 days post injection to estimate different blood metabolites. Daily milk yield was recorded and weekly average yield of each animal was calculated. From this study, it was found that blood metabolites such as glucose, triglycerides, total proteins, albumin, globulin and electrolytes like sodium and potassium were not altered by rbST injection. However, there was a significant (p<0.05) decrease in blood urea nitrogen (BUN) concentration in experimental group as compared to that of control group. The weekly average milk yield was significantly (p<0.001) higher (25%) in rbST injected group over the control group.

Effect of increasing dietary metabolizable protein on nitrogen efficiency in Holstein dairy cows

  • Imran, Muhammad;Pasha, Talat Naseer;Shahid, Muhammad Qamer;Babar, Imran;Naveed ul Haque, Muhammad
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.5
    • /
    • pp.660-665
    • /
    • 2017
  • Objective: The objective of the study was to determine the effects of increasing levels of metabolizable protein (MP) on lactation performance and nitrogen (N) efficiencies in lactating dairy cows. Methods: Nine multiparous cows in mid lactation [$113{\pm}25$ days in milk] received three treatments in a $3{\times}3$ Latin square design with a period length of 21 days. The treatments were three diets, designed to provide similar energy and increasing supply of MP (g/d) (2,371 [low], 2,561 [medium], and 2,711 [high] with corresponding crude protein levels [%]) 15.2, 18.4, and 20.9, respectively. Results: Increasing MP supplies did not modify dry matter intake, however, it increased milk protein, fat, and lactose yield linearly. Similarly, fat corrected milk increased linearly (9.3%) due to an increase in both milk yield (5.2%) and milk fat content (7.8%). No effects were observed on milk protein and lactose contents across the treatments. Milk nitrogen efficiency (MNE) decreased from 0.26 to 0.20; whereas, the metabolic efficiency of MP decreased from 0.70 to 0.60 in low to high MP supplies, respectively. The concentration of blood urea nitrogen (BUN) increased linearly in response to increasing MP supplies. Conclusion: Increasing MP supplies resulted in increased milk protein yield; however, a higher BUN and low MNE indicated an efficient utilization of dietary protein at low MP supplies.

Milk Protein Production and Plasma 3-Methylhistidine Concentration in Lactating Holstein Cows Exposed to High Ambient Temperatures

  • Kamiya, Mitsuru;Kamiya, Yuko;Tanaka, Masahito;Shioya, Shigeru
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1159-1163
    • /
    • 2006
  • This experiment was performed to examine the influences of high ambient temperature on milk production, nutrient digestibility, energy and protein sufficiency ratio, and plasma metabolites concentration in lactating cows. In a $2{\times}2$ crossover design, four multiparous lactating Holstein cows were maintained in a chamber under treatment of constant moderate ($18^{\circ}C$) ambient temperature (MT) or high ($28^{\circ}C$) ambient temperatures (HT). The DMI and milk protein yield were significantly lower in HT (p<0.05). The milk yield, milk lactose yield, and milk SNF yield tended to be lower in HT (p<0.10). No statistical differences for 4% fat-corrected milk and milk fat yield were observed. Rectal temperatures were significantly higher in HT than MT (p<0.05). The apparent DM, OM, ether extract, CF, and ash digestibility did not differ between treatments. On the other hand, the apparent CP digestibility was increased significantly (p<0.05) and nitrogen free extract tended to increase (p<0.10) in HT. The sufficiency ratio of ME and DCP intake for each requirement tended to be lower in HT than in MT (p<0.10). Concentrations of total protein (TP), albumin, and urea nitrogen in plasma did not differ between treatments. Plasma 3-methylhistidine (3MH) concentration as a marker of myofibrillar protein degradation tended to be higher in HT (p<0.15). In conclusion, high ambient temperature was associated with a lower energy and protein sufficiency ratio, and decreased milk protein production, even though the body protein mobilization tended to be higher.

Seasonal and Regional Effects on Milk Composition of Dairy Cows in South Korea

  • Nam, Ki-Taeg;Kim, Ki-Hyun;Nam, In-Sik;Abanto, Oliver D.;Hwang, Seong-Gu
    • Journal of Animal Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.537-542
    • /
    • 2009
  • For a period of over 6 years, more than 160,000 milk samples were collected and analyzed to determine the influence of different seasonal temperatures and geographic regional location on milk composition in South Korea. Fat, protein, lactose, non fat milk solids (NFMS) and total solids (TS) contents were significantly higher among dairy cows milked in winter season than other seasons (p<0.05). In contrast, freezing point (FP), milk urea nitrogen (MUN) and somatic cell count (SCC) were significantly higher in summer season than other seasons (p<0.05). The average SCC in the autumn season was $358{\times}10^3$/ml, which was lower than any other seasons (p<0.05). These results may be due to the changes in temperature during different seasons. Meanwhile, milk produced by dairy cows in central region had higher fat, protein, lactose, NFMS, TS and MUN and had lower SCC compared to other regions (p<0.05). Fat, TS, FP, MUN and citric acid in northeast region were lower than other regions (p<0.05). The SCC was significantly higher in southeast region than those of other regions (p<0.05). As a result, it might be possible that the differences in feeding management in each different region may affect the milk composition. In conclusion, present results indicated that milk composition is clearly influenced by both season and regional location. Therefore, based on these results, development of different feeding systems, according to season and region is needed to produce high quality and satiable milk production.

The carryover effects of high forage diet in bred heifers on feed intake, feed efficiency and milk production of primiparous lactating Holstein cows

  • Chemere, Befekadu;Lee, Bae Hun;Nejad, Jalil Ghassemi;Kim, Byong Wan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.3
    • /
    • pp.208-215
    • /
    • 2017
  • This study was designed to investigate the carryover effects of high-forage to concentrate (F: C) diet in bred heifers on feed intake, feed efficiency (FE) and milk production of primiparous lactating Holstein cows. The experiment was conducted for 589 days (d) from onset of pregnancy through to the end of first lactation. Twenty-four bred heifers (Body weight: $BW=345.8{\pm}45.4kg$ and $15{\pm}1.2mon$ of age) randomly assigned to two groups of 3 pens containing 4 heifers each and fed high forage (HF) diet with F: C ratio of 91.7: 8.3% and low forage (LF) diet with F: C ratio of 77.8: 22.2% throughout the pregnancy period. After calving, lactating cows were fed total mixed ration (TMR) based diet. No differences (p > 0.05) were observed in dry matter intake (DMI) of bred heifers and primiparous lactating cows in both HF and LF groups. The FE of mid-to-late lactation period was higher (p< 0.05) in HF than LF group. However, the HF group showed higher (p < 0.05) milk yield, 4 % fat corrected milk (FCM) and energy corrected milk (ECM) than LF group during the 305 d lactation. The LF group showed higher (p < 0.05) milk fat, crude protein (CP), milk urea nitrogen (MUN), solid not fat (SNF) and somatic cell count (SCC) than HF group. It is concluded that restriction of F: C ratio to 91.7: 8.3% to bred heifers has the potential carryover effects to maintain higher milk yield and FE with no adverse effect on feed intake and milk composition of primiparous lactating Holstein cows.

Effect of fermented spent instant coffee grounds on milk productivity and blood profiles of lactating dairy cows

  • Choi, Yongjun;Rim, Jongsu;Lee, Honggu;Kwon, Hyunchul;Na, Youngjun;Lee, Sangrak
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.1007-1014
    • /
    • 2019
  • Objective: This study was conducted to evaluate the fermentation characteristics under low mesophilic temperature of spent instant coffee ground (SICG) and to estimate the effect of fermented SICG (FSICG) as alternative feed ingredient on milk productivity of dairy cows. Methods: In the fermentation trial, fermentation of SICG was performed to investigate changes in characteristics using the microbial mixture (Lactobacillus plantarum, Saccharomyces cerevisiae, and Bacillus subtilis = 1:1:1) for 21 days at $20^{\circ}C$ under anaerobic conditions. Molasses was added at 5% of dry mass. In the animal trial, eighteen Holstein Friesian cows were used to evaluate the nutritive value of the FSICG which was fermented for 14 days under the same condition as the fermentation trial. Results: In the fermentation trial, the dry matter (DM) and organic matter content linearly decreased with fermentation time (p<0.001 and p = 0.008, respectively). The acid detergent insoluble nitrogen content linearly decreased with fermentation time (p = 0.037). The microorganism counts linearly increased for Lactobacillus plantarum, Saccharomyces cerevisiae, and Bacillus subtilis across fermentation time (p<0.001). In the animal trial, the DM intake of the control and FSICG treatment were not significantly different, as were milk yield, 4% fat corrected milk, fat-protein corrected milk, and feed to milk conversion content. Fat, protein, lactose, non-fat solids, milk urea nitrogen, and somatic cell counts were also not significantly different in milk composition between treatments. Conclusion: FSICG should be considered a sufficient substitute for cottonseed as a feed component, and 5% DM of a dietary FSICG level was appropriate for dairy cow diets.

FEEDING OF BYPASS PROTEIN TO CROSS BRED COWS IN INDIA ON STRAW BASED RATION

  • Kunju, P.J.G.;Mehta, A.K.;Garg, M.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.1
    • /
    • pp.107-112
    • /
    • 1992
  • Feeding of bypass protein to lactating animals have been suggested by many research scientists as a way to increase the nutrient supply at the intestinal level thereby enhance animal production in ruminant animals. A feeding trial with a formulated bypass protein feed on straw based ration was carried out by using lactating cross bred cows at the stage of 4th month of their lactation. Bypass protein feed was fed at 5 different levels. Urea Molasses Block was used as a nitrogen source to the rumen microflora. In order to reduce the heat increment straw intake was restricted to all the animals. Urea Molasses Block intake was noticed varying in proportion with the bypass protein feed intake. Milk production was observed increasing in accordance with the level of bypass protein feed intake. However, the maximum response was noticed in cows that were fed 3 kg bypass protein feed. The nutrient availability at this stage was below the NRC (1988) requirements. Other remarkable finding was that the cows maintained the persistency of milk production even after 3rd month of lactation when the ambient temperature was $40^{\circ}C$.