Browse > Article
http://dx.doi.org/10.5713/ajas.2006.837

Effects of Urea Level and Sodium DL-malate in Concentrate Containing High Cassava Chip on Ruminal Fermentation Efficiency, Microbial Protein Synthesis in Lactating Dairy Cows Raised under Tropical Condition  

Khampa, S. (Tropical Feed Resources Research and Development Center (TROFREC), Faculty of Agriculture Khon Kaen University)
Wanapat, Metha (Tropical Feed Resources Research and Development Center (TROFREC), Faculty of Agriculture Khon Kaen University)
Wachirapakorn, C. (Tropical Feed Resources Research and Development Center (TROFREC), Faculty of Agriculture Khon Kaen University)
Nontaso, N. (Department of Microbiology, Faculty of Science, Khon Kaen University)
Wattiaux, M. (Department of Dairy Science, University of Wisconsin)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.19, no.6, 2006 , pp. 837-844 More about this Journal
Abstract
Four, lactating dairy cows were randomly assigned according to a $2{\times}2$ Factorial arrangement in a $4{\times}4$ Latin square design to study supplementation of urea level (U) at 2 and 4% and sodium dl-malate (M) at 10 and 20 g/hd/d in concentrate. The treatments were as follows U2M10, U2M20, U4M10 and U4M20, respectively. The cows were offered the treatment concentrate at a ratio to milk yield at 1:2.5 and urea-treated rice straw was fed ad libitum. The results have revealed that rumen fermentation and blood metabolites were similar for all treatments. The populations of protozoa and fungal zoospores were significantly different as affected by urea level and sodium dl-malate. In addition, the viable bacteria were similar for amylolytic and proteolytic bacteria. Cellulolytic bacteria were significantly affected by level of sodium dl-malate especially Selenomonas ruminantium and Megasphaera elsdenii while Butyrivibrio fibrisolvens was significantly affected by level of urea supplementation. In conclusion, the combined use of concentrate containing high level of cassava chip at 75% DM with urea at 4% in concentrate and sodium dl-malate at 20 g/hd/d with UTS as a roughage could improv rumen ecology and microbial protein synthesis efficiency in lactating dairy cows.
Keywords
Urea; Sodium DL-malate; Rumen Fermentation; Cassava Chip; Urea-treated Rice Straw; Tropical Dairying;
Citations & Related Records

Times Cited By Web Of Science : 19  (Related Records In Web of Science)
Times Cited By SCOPUS : 18
연도 인용수 순위
1 Callaway, T. R. and S. A. Martin. 1996. Effects of organic acid and monensin treatment on in vitro mixed ruminal microorganism fermentation of cracked corn. J. Anim. Sci. 74:1982-1989
2 Chanjula, P., M. Wanapat, C. Wachirapakorn, S. Uriyapongson and P. Rowlinson. 2003. Ruminal degradability of tropical feeds and their potential use in ruminant diets. Asian-Aust. J. Anim. Sci. 16:211-216   DOI
3 Chanjula, P., M. Wanapat, C. Wachirapakorn, S. Uriyapongson and P. Rowlinson. 2004. Effect of synchronizing starch sources and protein (NPN) in the rumen on feed intake, rumen microbial fermentation, nutrient utilization and performance of lactating dairy cows. Asian-Aust. J. Anim. Sci. 17:1400-1410   DOI
4 Crocker, C. L. 1967. Rapid determination of urea nitrogen in serum or plasma without deproteinzation. Am. J. Medical Techn. 33:361-365
5 Erdman, R. A. 1988. Dietary buffering requirements of the lactating dairy cows. A review. J. Dairy Sci. 71:3246-3266   DOI
6 Goering, H. K. and P. J. Van Soest. 1970. Forage Fiber Analysis (apparatus, reagent, procedures and some application). Agric. Handbook No. 379, ARS, USDA, Washington, DC
7 Newbold, C. J., R. J. Wallace and F. M. McIntosh. 1996. Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. Br. J. Nutr. 76:249-261   DOI   ScienceOn
8 Shingfield, K. J. and N. W. Offer. 1998. Determination of allantoin in bovine milk by high-performance liquid chromatography. J. Chromatogr. B. 706:342-346   DOI   ScienceOn
9 Wohlt, J. E., J. H. Clark and F. S. Blaisdell. 1978. Nutritional value of urea versus preformed protein for ruminants. II. Nitrogen utilization by dairy cows fed corn based diets containing supplemental nitrogen from urea and/or soybean meal. J. Dairy Sci. 61:916-931   DOI
10 Giesecke, D., L. Ehrentrich and M. Stangassinger. 1994. Mammary and renal excretion of purine metabolites in relation to energy intake and milk yield in dairy cows. J. Dairy Sci. 77:2376-2381   DOI   ScienceOn
11 Khampa, S., M. Wanapat, C. Wachirapakorn, N. Nontaso and M. Wattiaux. 2006. Effect of levels of sodium dl-malate supplementation on ruminal fermentation efficiency in concentrates containing high levels of cassava chip in dairy steers. Aisan-Aust. J. Anim. Sci. (In Press)   DOI
12 Martin, S. A., M. N. Streeter, D. J. Nisbet, G. M. Hill and E. E. Williams. 1999. Effect of DL-malate on ruminal metabolism and performance of cattle fed a high concentrate diets. J. Anim. Sci. 77:1008-1015   DOI
13 Wanapat, M. 2000. Rumen manipulation to increase the efficient use of local feed resources and productivity of ruminants in the tropics. Asian-Aust. J. Anim. Sci. 13:59-67
14 Promkot, C. and M. Wanapat. 2005. Effect of level of crude protein and use of cottonseed meal in diets containg cassava chips and rice straw for lactating dairy cows. Asian-Aust. J. Anim. Sci. 18:502-511   DOI
15 Gottschalk, G. 1986. Bateria metabolism (2nd Ed.). Sparinger- Verlag. New York
16 Hoover, W. H. and S. R. Stokes. 1991. Balancing carbohydrate and proteins for optimum rumen microbial yield. J. Dairy Sci. 74:3640-3644
17 Valadares, R. F. D., G. A. Broderick, S. C. Valadares Filho and M. K. Clayton. 1999. Effect of replacing alfalfa silage with high moisture corn on ruminal protein synthesis estimated from excretion of total purine derivatives. J. Dairy Sci. 82:2686-2696   DOI   ScienceOn
18 Asanuma, N., M. Iwamoto and T. Hino. 1999. Effect of the addition of fumalate on methane production by ruminal microorganisms in vitro. J. Dairy Sci. 82:780-787   DOI   ScienceOn
19 Hungate, R. E. 1969. A roll tube method for cultivation of stric anaerobes. In: Methods in Microbiology. (Ed. J. R. Norris and D. W. Ribbons). New York
20 Sanson, D. W. and O. T. Stallcup. 1984. Growth response and serum constituents of Holstein bulls fed malic acid. Nut. Rep. Int. 30:1261-1267
21 Sommart, K., M. Wanapat, D. S. Parker and P. Rowlinson. 2000. Cassava chip as an energy source for lactating dairy cows fed rice straw. Asian-Aust. J. Anim. Sci. 13:1094-1101   DOI
22 Cotta, M. A. and J. B. Russell. 1982. Effect of peptides and amino acids on efficiency of rumen bacteria protein synthesis in continuous culture. J. Dairy Sci. 65:226-234   DOI
23 IAEA. 1997. Estimation of the rumen microbial protein production from purine derivatives in rumen. Animal production and healt section. Vienna, Austria
24 France, J. and R. C. Siddons. 1993. Volatile fatty acid production. In: Quantilitive Aspects Ruminant Digestion and Metabolisim (Ed. J. M. Forbes and J. France). CAB International, Willingford, UK
25 Wanapat, M. 1990. Nutritional Aspects of Ruminant Production in Southeast Asia with Special Reference to Thailand. Funny Press, Ltd., Bangkok, Thailand
26 Fernandez, J. M., T. Sahulu, C. Lu, D. Ivey and M. J. Potchoiba. 1987. Production and metabolic aspects of non-protein nitrogen incorporation in lactation rations of dairy goats. Small Rum. Res. 26:105-107   DOI   ScienceOn
27 SAS. 1998. SAS/STAT User's Guide. Version 6.12. SAS Inst. Inc., Cary, NC, USA
28 Owens, F. N., D. S. Secrist, W. J. Hill and D. R. Gill. 1998. Acidosis in cattle: a review. J. Anim. Sci. 76:275-286
29 Wanapat, M. 2003. Manipulation of cassava cultivation and utilization to improve protein to energy biomass for livestock feeding in the tropics. Asian-Aust. J. Anim. Sci. 16:463-472   DOI
30 Galyean, M. 1989. Laboratory Procedure in Animal Nutrition Research. Department of Animal and Life Science. New Mexico states University, USA
31 Wanapat, M. and O. Pimpa. 1999. Effect of ruminal NH3-N levels on ruminal fermentation, purine derivatives, digestibility and rice straw intake in swamp buffaloes. Asian-Aust. J. Anim. Sci. 12:904-907   DOI
32 Hoover, W. H. 1986. Chemical factors involved in ruminal fiber digestion. J. Dairy Sci. 69:2755-2766   DOI   ScienceOn
33 Kim, Y. J., R. H. Liu, L. L. Rychlik and J. B. Russell. 2002. The enrichment of a ruminal bacterium (Megasphaere elsdenii Y J- 4) that produces the trans-10, cis-12 isomer of conjugated linoleic acid. J. Appl. Environ. Microbiol. 92:976-982   DOI   ScienceOn
34 Kiyothong, K. and M. Wanapat. 2004. Growth, hay yield and chemical composition of cassava and Stylo 184 grown under intercropping. Aisan-Aust. J. Anim. Sci. 17:799-807   DOI
35 Van Keulen, J. and B. A. Young. 1977. Evaluation of acid insoluble ash as a neutral marker in ruminant digestibility studies. J. Anim. Sci. 44:282-287   DOI
36 Chen, X. B. and M. J. Gomes. 1992. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives-an overview of the technical details. International Feed Resources Unit, Rowel Research Institute, Aberdeen, UK
37 Zinn, A. R. and F. N. Owen. 1986. A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Can. J. Anim. Sci. 66:157-163   DOI
38 AOAC. 1985. Official Methods of Analysis. Association of Official Analysis Chemists, DC, USA
39 Lopez, S., C. Newbold and R. J. Wallace. 1999. Influence of sodium fumarate addition on rumen fermentation in vitro. Br. J. Nutr. 81:59-64
40 Steel, R. G. D. and J. H. Torrie. 1980. Principles and Procedure of Statistics. McGraw-Hill Publishing Co., New York