• Title/Summary/Keyword: Mild-hybrid electric vehicle

Search Result 17, Processing Time 0.031 seconds

A Study on Optimal Operation Strategy for Mild Hybrid Electric Vehicle Based on Hybrid Energy Storage System

  • Bae, SunHo;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.631-636
    • /
    • 2018
  • This paper proposed an optimal operation strategy for a hybrid energy storage system (HESS) with a lithium-ion battery and lead-acid battery for mild hybrid electric vehicles (mild HEVs). The proposed mild HEV system is targeted to mount the electric motor and the battery to a conventional internal combustion engine vehicle. Because the proposed mild HEV includes the motor and energy storage device of small capacity, the system focuses on low system cost and small size. To overcome these limitations, it is necessary to use a lead acid battery which is used for a vehicle. Thus, it is possible to use more energy using HESS with a lithium battery and a lead storage battery. The HESS, which combines the lithium-ion battery and the secondary battery in parallel, can achieve better performance by using the two types of energy storage systems with different characteristics. However, the system requires an operation strategy because accurate and selective control of the batteries for each situation is necessary. In this paper, an optimal operation strategy is proposed considering characteristics of each energy storage system, state-of-charge (SOC), bidirectional converters, the desired output power, and driving conditions in the mild HEV system. The performance of the proposed system is evaluated through several case studies with respect to energy capacity, SOC, battery characteristic, and system efficiency.

A Study of CO2 Emission Characteristics on the Vehicle with LPG Direct Injection and Mild Hybrid System (LPG 직분사 엔진과 마일드 하이브리드 시스템 적용 차량의 CO2배출 특성 연구)

  • An, Young kuk;Byeonggyu, Yang;Jinil, Park
    • Journal of ILASS-Korea
    • /
    • v.27 no.4
    • /
    • pp.211-218
    • /
    • 2022
  • Recent vehicle regulations have become increasingly stringent in order to reduce greenhouse gases. Then not only movement to replace internal combustion engine vehicles with hybrid vehicles, but also studies of replacing internal combustion engine fuels with low-pollution fuels are increasing. In this study, the characteristics of a vehicle with LPG fuel engine and mild hybrid system is investigated. To avoid shortage of maximum power on LPG engine, a direct injection system of LPG is applied. In addition, P0 mild hybrid system is adopted to enhence the efficiency of the vehicle. The vehicle model is developed in order to predict fuel economy and CO2 emission of LPDi MHEV.

Characteristics of Fuel Economy and Greenhouse Gases according to Driving Mode Conditons of Hybrid Electric Vehicles (HEV 주행모드에 따른 연비·온실가스 특성)

  • Kang, Eunjeong;Kwon, Seokjoo;Seo, Youngho
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.1
    • /
    • pp.23-26
    • /
    • 2015
  • The purpose of present study is to analysis the Characteristics of fuel economy and Green house gases due to the driving mode conditions of The hybrid electric vehicle(HEV). HEVs are divided into mild and power types according to the their functions. mild type HEVs are inexpensive because they do not need to implement a pure electric mode. Power type HEVs are more expensive but has also better fuel efficiency. In the present paper, the test results for the gasoline vehicle using FTP-75 mode and HWFET are present.

Design and Control Method of ZVT Interleaved Bidirectional LDC for Mild-Hybrid Electric Vehicle

  • Lee, Soon-Ryung;Lee, Jong-Young;Jung, Won-Sang;Won, Il-Kwon;Bae, Joung-Hwan;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.226-239
    • /
    • 2018
  • In this paper, design and control method ZVT Interleaved Bidirectional LDC(IB-LDC) for mild-hybrid electric vehicle is proposed. The IB-LDC is composed of interleaved buck and boost converters employing an auxiliary inductor and auxiliary capacitors to achieve zero-voltage-transition. Operating principle of IB-LDC according to operation mode is introduced and mathematically analyzed in buck and boost mode. Moreover, PFM and phase control are proposed to reduce circulating current for low power range. Passive components design such as main inductor, auxiliary inductor and capacitors is suggested, considering ZVT condition and maximizing efficiency. Furthermore, a 600W prototype of ZVT IB-LDC for MHEVs is built and tested to verify validity.

Development of High efficient BLDC Motor for Electric Air Conditioner of Mild Hybrid Vehicle (Mild Hybrid차량의 전동에어컨용 고효율 BLDC Motor개발)

  • Hur Jin;Jung In-Soung;Ryu Se-Hyun;Kim Joo-Han;Sung Ha-Gyeong;Kang Gyu-Hong
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.923-925
    • /
    • 2004
  • A lot of conventional automotive components driven by mechanical power source are being replaced with electrical ones to comply with the demands of market and customer, therefore the amount of electric energy used in a vehicle will be increased continuously. The increment of electric power demand causes interest on new higher power system such as 42V Power Net, and furthermore necessity for development of energy storage device is highlighted recently. This paper present the design of the BLDC motor for electric air-conditioner in 42V system and compare with the characteristics of several type BLDC motor.

  • PDF

Design and Implementation of 1.8kW bi-directional LDC with Parallel Control Strategy for Mild Hybrid Electric Vehicles (병렬제어기법이 적용된 1.8kW급 마일드 하이브리드 양방향 LDC 설계 및 구현)

  • Kim, Hyun-Bin;Jeong, Jea-Woong;Bae, Sungwoo;Kim, Jong-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.75-81
    • /
    • 2017
  • This paper presents a design and parallel control strategy of 1.8 kW low-voltage DC-DC converter (LDC) for mild hybrid electric vehicles to improve their power density, system efficiency, and operation stability. Topology and control scheme are important on the LDC for mild hybrid electric vehicles to achieve high system efficiency and power density because of their very low voltage and large current in input and output terminals. Therefore, the optimal topological structure and control algorithm are examined, and a detailed design methodology for the power and control stages is presented. A working sample of 1.8 kW LDC is designed and implemented by applying the adopted topology and control strategy. Experimental results indicate 92.45% of the maximum efficiency and 560 W/l of power density.

DEVELOPMENT OF INVERTER AND POWER CAPACITORS FOR MILD HYBRID VEHICLE (MHV) - TOYOTA "CROWN"

  • Shida, Y.;Kanda, M.;Ohta, K.;Furuta, S.;Ishii, J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.1
    • /
    • pp.41-45
    • /
    • 2003
  • The 42V Mild Hybrid System has been released into market by Toyota for the first time in the world in 2001. The set-up employs an inverter unit to control the motor/generator (MG) electronically. The driving system called such as Toyota Mild Hybrid System (TMHS) has additional new functions to conventional internal combustion engines. When stopping vehicle, the engine stops promptly. When starting vehicle, by releasing the brake pedal MG starts the vehicle at the same time (EV-driving mode). When stepping on the accelerator pedal, or after a given period of time the engine firing occurs and the engine-driving mode starts. When running by motor, the power is supplied to the motor from 36V battery through the inverter. High outputs and instant responses are required for Inverter. At the same time, the compact volume is required to fit into the limited space of the engine room. The compact size and high output are also required to Power Capacitor used for this inverter. The power capacitors has been newly developed, shaped in "flat" type, suitably for the inverter. The points of developments on inverter and power capacitor are described in this paper.his paper.

DYNAMIC SIMULATION MODEL OF A HYBRID POWERTRAIN AND CONTROLLER USING CO-SIMULATION-PART II: CONTROL STRATEGY

  • Cho, B.;Vaughan, N.D.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.785-793
    • /
    • 2006
  • The topic of this study is the control strategy of a mild hybrid electric vehicle (HEV) equipped with a continuously variable transmission (CVT). A brief powertrain and vehicle configuration is introduced followed by the control strategy of the HEV with emphasis on two key parts. One of them is an ideal operating surface (IOS) that operates the CVT powertrain optimally from the viewpoint of the tank-to-wheel efficiency. The other is a charge sustaining energy management to maintain the battery state of charge (SOC) within an appropriate level. The fuel economy simulation results of the HEV over standard driving cycles were compared with those of the baseline vehicle. Depending on the driving cycle, 1.3-20% fuel saving potential is predicted by the mild hybridisation using an integrated starter alternator (ISA). The detailed energy flow analysis shows that the majority of the improvement comes from the idle stop function and the benefits for electrical accessories. Additionally, the differences between the initial and the final SOC are in the range $-1.0{\sim}+3.8%$ in the examined cycle.

Research on a 2.5kW 8-Phase Bi-directional Converter for Mild Hybrid Electric Vehicles (마일드 하이브리드 전기 차량용 2.5kW급 8상 양방향 컨버터에 관한 연구)

  • Lim, Jae-Woo;Kim, Hee-Jun;Choi, Jun-Sam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.82-91
    • /
    • 2017
  • This paper is a study on the bi-directional DC-DC converter, one of the key elements of 48V-12V dual systems in mild hybrid electric vehicles. Mild hybrid electric vehicles require a bi-directional DC-DC converter that can efficiently transmit power in two directions between a 48V battery and a 12V battery. To develop a bi-directional DC-DC converter with better price competitiveness, upgraded fuel economy, excellent performance and smaller size, this study designed, produced and presented a circuit that improved on the existing one. In the proposed 8-phase bi-directional DC-DC converter, the size of the passive element was reduced through the 8-phase interleaved topology, whereas downscaling had previously posed a difficulty. This study also designed and produced a 2.5kW class prototype. Based on the proposed 8-phase interleaved topology, a size of 227.5 (W) * 172 (L) * 64.35 (H) was achieved. In the boost mode operation and buck operation modes, the maximum efficiency was recorded at 94.04 % and 95.78 %, respectively.