• Title/Summary/Keyword: Mild steel

Search Result 391, Processing Time 0.021 seconds

Physical Properties of Rice Husk (왕겨의 물리적 성질)

  • Park S. J.;Kim M. H.;Shin H. M.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.4 s.111
    • /
    • pp.229-234
    • /
    • 2005
  • Kinetic friction coefficient, bulk density, dynamic and static angle of repose, and terminal velocity of rice husk at the moisture range 7 to $23\%$ w.b. were determined. It could lead to better design and operation of the processing machinery and handling facilities. Friction coefficient was determined from the horizontal traction force measured by pulling the container holding a mass of rice husk on various plate materials. Dynamic angle of repose was calculated from the photos of bulk samples piled by gravity flow on a circular platform. Static angle of repose was determined by measuring the side angle of the bulk material which was left in a cylindrical container after natural discharge of the bulk sample through a circular hole in the bottom plate. Kinetic friction coefficients of rice husk were in the range of $0.254\~0.410,\;0.205\~0.520,\;0.229\~0.400,\;and 0.133\~0.420$ on PVC, mild steel, galvanized steel, and stainless steel, respectively. Bulk density, dynamic and static angle of repose, and terminal velocity were in the range of $91.7\~98.3$ $kg/m^3$, $40.2\~47.6^{\circ},\;52.8\~83.7^{\circ},$ and $1.36\~1.73$ m/s, respectively. These physical properties of rice husk increased linearly as the moisture content increased.

A Study on Evaluation of Plastic Strain at Notch Tip of Weld HAZ in Steel (강 용접 열영향부 놋치 선단 의 소성 스트레인 평가에 관한 연구)

  • 김태영;임재규;정세희
    • Journal of Welding and Joining
    • /
    • v.2 no.1
    • /
    • pp.41-48
    • /
    • 1984
  • Recrystallization technique was applied to analyze plastic strain at the notch tip of coarse grain HAZ in mild steel (SB 41) and high strength steel (SA 588). The notch tip of specimen was deformed by three point bending. Accumulated displacement (Crack Opening Displacement ${delta}t$) by the monotonic and cyclic loading under room temperature and hot strain embrittlement temperature ($250^{\circ}C$) was 0~1.0mm. Recrystallization heat treatment conditions were $650^{circ}C{ imes}3hr$ for SB 41 and $700^{circ}C{ imes}3hr$ for SA 588. The experimental results obtained were as follows ; 1) Distribution of the effective plastic strain at plastic zone was appeared by the function of crack opening displacement, and plastic zone or the effective plastic strain increased with crack opening displacement. 2) Plastic strain at notch tip of HAZ due to accumulated hot strain calculated as follows. .epsilon. over bar $_{p}$ = .epsilon. over bar $_{cr}$ (x/ $R_{x}$ ) $^{m}$ (m=0.25) 3) Work hardending ratio of notch tip for hot strain was linearly increased with .epsilon. over bar $_{max}$ and dependent upon the material types.s.

  • PDF

Study on the Adhensivity and Corrosion Resistance Oxide Coated Materials ( 2 ) (산화물 피복강재의 밀착성과 내식성에 관한 연구 ( 2 ))

  • Lim, Uh-Joh;Lee, Jong-Rak
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.3
    • /
    • pp.294-301
    • /
    • 1996
  • To improve the corrosion resistance of stainless steel and Fe, the adherence between fIlm and substarte and the corrosion resistance to ceramic fIlm ($TiO_2$ and $ZrO_2$), coated by RF magnetron sputtering, were studied. The adherence index (X) was determined by the measure of micro - hardness test. Also, the corrosion resistance on oxide coatings was studied using electrochemical measurement. The main results obtained are as the following: 1) In the micro - hardness test, with 1J.UI1 thickness fIlm, it has only one the value of X. Above 2J.UI1 thickness fIlm, however, get another value ofX as the cracks in fIlm. 2) The adhensivity of titania ($TiO_2$) coated fIlm is superior to that of zirconia ($ZrO_2$) coated fIlm. 3) All oxide fIlm used adhere well on the mild materials such as pure steel than high intensity materials like stainless steel. 4) The corrosion resistance of zirconia coated materials was improved compared to titania coated materials.

  • PDF

Inspection of corrosion in under frame side sill for rolling stocks using pulsed eddy current testing (펄스 와전류(Pulsed eddy current)를 이용한 도시철도차량의 Under Frame Side Sill 부식 평가)

  • Kim, Woong-Ji;Song, Sung-Jin;Kim, Hak-Jun;Chung, Jung-Duk;Lee, Chan-Woo
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1117-1124
    • /
    • 2009
  • Under frame side sill of rolling stock structure is designed for preventing corrosion in order to meet mechanical requirements. However during long operation time more than 20 years, there are corrosion in the under frame side sill caused by environmental effect, vibration and etc. So, detection and evaluation of the corrosion ill the under frame nondestructive is one of important issues to extend their life time. Most of nondestructive methods are not easy to apply for detecting corrosion in the under frame side sill, since the under frame side sill consist of there layered with different material (stainless steel - stainless steel - mild steel) and each layer is connected by spot weld and plug weld. Fortunately, pulsed eddy current method claimed that it can be measured not only thickness change but also corrosion under their insulation layers. So, in this study, we have investigated performance of pulsed eddy current testing method by measuring thickness variation of fabricate of mock-up specimens. The investigation results obtained from mock-up specimens and the corrosion evaluation results of the aged rolling stocks will be presented.

  • PDF

Discharge Characteristics of SF6 Mixture Gases due to Processing Status of needle electrode under Non-Uniform Fields (불평등 전계 하에서의 침전극 가공상태에 따른 SF6혼합가스의 방전특성)

  • Go, Y.S.;Seo, H.J.;Rhie, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.198-199
    • /
    • 2006
  • AC spark discharge voltage of SF6/C02and SF6/N2 containing various mixed rate in volume percent (1, 5 and 10%) of SF6 in non-uniform fields are investigated. The needle to plane electrode gap spacing was 5 and 10 mm, and the gas pressure was varied within the range of 0.1${\sim}$0.7 MPa. We have observed a N-characteristic typical for the electronegative gases even in gas mixtures of 1% SF6 with CO2 and N2 as buffer gases. Especially, the materials of the needle electrode affect the insulation properties of the gas mixtures drastically. On the contrary to the case of needle electrodes made by mild steel or high carbon steel, the N-characteristics are hardly perceived in the case of stainless steel needle in this experiment.

  • PDF

Effects of Low Temperature on Mechanical Properties of Steel and Ultimate Hull Girder Strength of Commercial Ship (저온환경이 선박 및 해양플랜트용 탄소강재의 재료강도특성 및 상선의 최종 종강도 거동에 미치는 영향)

  • Kim, Do Kyun;Park, Dae Kyeom;Seo, Jung Kwan;Paik, Jeom Kee;Kim, Bong Ju
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.427-432
    • /
    • 2012
  • This paper presents the material properties of carbon steels for ships, and offshore structures (ASTM A131) are tested under a series of arctic and cryogenic temperature conditions. For material tension tests, among the ASTM 131 steels, Grades A and B of mild steel and Grade AH of high tensile steel have been used. The obtained mechanical properties of the materials from the material tension tests were applied in a 13,000TEU class container ship to define the effect of low temperature on the ultimate longitudinal strength of the target structure by using the ALPS/HULL intelligent supersize finite element method. The tensile coupon test results showed increased strength and nonuniform fracture strain behaviors within different grades and temperatures. Increasing the material strength resulted in increasing the ultimate longitudinal strength of the ship.

A new metallic energy dissipation system for steel frame based on negative Poisson's ratio structures

  • Milad Masoodi;Ahmad Ganjali;Hamidreza Irani;Aboozar Mirzakhani
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.93-102
    • /
    • 2024
  • Using negative Poisson's ratio materials, an innovative metallic-yielding damper is introduced for the first time in this study. Through the use of ABAQUS commercial software, a nonlinear finite element analysis is conducted to determine the performance of the proposed system. Mild steel plates with elliptical holes are used for these types of dampers, which dissipate energy through an inelastic deformation of the constitutive material. To assess the capability of the proposed damper, nonlinear quasi-static finite element analyses have been conducted on the damper with a variety of geometric parameters. According to the results, the proposed system is ductile and has a high capacity to dissipate energy. The proposed auxetic damper has a specific energy absorption of 910.8 J/kg and a ductility of 33.6. Therefore, this damper can dissipate a large amount of earthquake input energy without buckling by increasing the buckling load of the brace with its ductile behavior. In addition, it was found that by incorporating auxetic dampers in the steel frame, the frame was made harder, stronger, and ductile and its energy absorption increased by 300%.

Performance of plastic hinges in FRP-strengthened compressive steel tubes for different strain-hardening response

  • Ali Reza Nazari;Farid Taheri
    • Structural Engineering and Mechanics
    • /
    • v.91 no.3
    • /
    • pp.301-313
    • /
    • 2024
  • Plastic buckling of tubular columns has been attributed to rotational instability of plastic hinges. The present study aimed to characterize the plastic hinges for two different grades of strain-hardening, examined in mild-steel (MS) and stainless-teel (SS) tubes with un-strengthened and strengthened conditions. At the primary stage, the formerly tested experimental specimens were simulated using full-scale FE models considering nonlinear response of the materials, then to estimate the characteristics of the plastic hinges, a meso model was developed from the critical region of the tubes and the moment-rotation diagrams were depicted under pure bending conditions. By comparison of the relative rotation diagram obtained by the full-scale models with the critical rotation under pure bending, the length and critical rotation of the plastic hinges under eccentric axial load were estimated. The stress and displacement diagrams indicated the mechanism of higher energy absorption in the strengthened tubes, compared to unstrengthened specimens, due to establishment of stable wrinkles along the tubes. The meso model showed that by increasing the critical rotation in the strengthened MS tube equal to 1450%, the energy absorption of the tube has been enhanced to 2100%, prior to collapse.

Corrosion Inhibitive and Adsorption Properties of a Flavonoid compound for Mild Steel in Acidic Medium (산성 조건에서 부드러운 강철용 부식억제제로 사용되는 플라보노이드계 화합물의 부식억제성질과 흡착성질)

  • Ezhilarasi, J. Christy;Nagarajan, Prabavathy
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.495-501
    • /
    • 2011
  • The corrosion inhibitive nature of a flavonoid compound, 3-Hydroxy-7-methoxy-2-phenylchromen-4-one (HMPC), the synergistic effect between HMPC and n-Tetrabutylammonium bromide (TBAB) and their adsorption behavior on mild steel in hydrochloric acid solution were studied by weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. The results of weight loss study at different temperatures revealed that the inhibition efficiency increases with inhibitor concentration and decreases with increase in the temperature of the system. The electrochemical studies showed that the inhibitor acts through mixed mode of inhibition and the inhibitor molecules adsorb on the metal - solution interface forming a protective layer. The adsorption of the inhibitor molecules over the metal surface was supported by the obeyed Langmuir's adsorption isotherm, Scanning Electron Microscopic analysis (SEM) and Fourier Transform Infrared (FT-IR) spectroscopic studies.

Study on the Characteristics of Cavitation Erosion-Corrosion for Mild Steel ( 1 ) - Damage Behaviour of Vibration Cavitation Erosion-Corrosion - (연강의 캐비테이션 침식-부식 특성에 관한 연구 ( 1 ) - 진동 캐비네이션 침식-부식 손상 거동 -)

  • Lim, Un-Joh;Hwang, Jae-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.4
    • /
    • pp.413-422
    • /
    • 1995
  • Cavitation erosion-corrosion implies damage to materials due to the shock pressure or shock wave that results when bubbles form and collapse at a metal surface within a liquid. If the liquid is corrosive to the material, a condition typically encountered in industry, the component materials may suffer serious damage by a combination of mechanical and electrochemical attack. In this study, the mild steel(SS41) was tested by using the piezoelectric vibrator with 20kHz, 24$\mu$m to cavity generation apparatus. The damage behaviour of vibration cavitation erosion-corrosion and the environment characteristics were investigated in various solutions which are seawater, tap water and distilled water. The main results obtained are as follows; 1) The cavitation erosion-corrosion damage behaviour in the seawater increases to occur at the equal degree on the middle portion and the outside portion of specimen. The distilled water specimen, on other hand, occurs beginning on the outside portion across to the middle portion of specimen. 2) The cavitation erosion-corrosion damage in the tap water of low specific resistance more increases than that in the distilled water of high specific resistance at the initial testing time and more decreases than that in it by the CaCO sub(3) film with testing time. 3) Cavitation erosion-corrosion damage characteristic divides into four regions; incubation region, acceleration region, deceleration region and steady state region.

  • PDF