• 제목/요약/키워드: Migration model

Search Result 594, Processing Time 0.032 seconds

A Model to Estimate Population by Sex, Age and District Based on Fuzzy Theory

  • Pak. Pyong-Sik;Kim, Gwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.42.1-42
    • /
    • 2002
  • A model to predict population by sex, age and district over a long-range period is proposed based on fuzzy theories. First, a fuzzy model is described. Second, a method to estimate the social increase by sex and age in each district is proposed based on a fuzzy clustering method for dealing with long-range socioeconomic changes in population migration. By the proposed methods, it became possible to predict the population by sex, age and district over a long-range period. Third, the structure and characteristics of the three models of employment model, time distance model, and land use model constructed to predict various socioeconomic indicators, which are require...

  • PDF

Three-Dimensional Modeling of Void Formation During Resin Transfer Molding (RESIN TRANSFER MOLDING 공정에서의 기공 형성에 관한 3차원 모델링)

  • Bae, Jun-Ho;Kang, Moon-Koo;Lim, Seoug-Taek;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.246-250
    • /
    • 2001
  • In resin transfer molding (RTM), resin is forced to flow through the fiber perform of inhomogeneous permeability. This inhomogeneity is responsible for the mismatch of resin velocity within and between the fiber tows. The capillary pressure of the fiber tows exacerbates the spatial variation of the resin velocity. The resulting microscopic perturbations of resin velocity at the flow front allow numerous air voids to form. In this study, a mathematical model was developed to predict the formation and migration of micro-voids during resin transfer molding. A transport equation was employed to account for the migration of voids between fiber tows. Incorporating the proposed model into a resin flow simulator, the volumetric content of micro-voids in the preform could be obtained during the simulation of resin impregnation.

  • PDF

PPGA for the Optimal Load Planning of Containers (컨테이너의 최적 적하계획을 위한 PPGA)

  • Kim, Kil-Tae;Cho, Seok-Jae;Jin, Gang-Gyoo;Kim, Si-Hwa
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.517-523
    • /
    • 2004
  • The container load planning is one of key factors for efficient operations of handling equipments at container ports. When the number of containers are large, finding a good solution using the conventional genetic algorithm is very time consuming. To obtain a good solution with considerably small effort, in this paper a pseudo-parallel genetic algorithm(PPGA) based on both the migration model and the ring topology is developed The performance of the PPGA is demonstrated through a test problem of determining the optimal loading sequence of the containers.

A study on heavy metal migration in fly ash/bentonite using a reactive transport model

  • Jung, Yoo-Jin;Cho, Hee-Chan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.629-636
    • /
    • 2003
  • The retardation of heavy metals in a mixture of fly ash and bentonite was studied as a potential barrier material for a landfill. Column tests were conducted using synthetic leachate having 100 mg/L and 50 mg/L of lead (Pb) and cadmium (Cd), respectively. Results indicated that the mixture had obvious retardation ability for heavy metals. To investigate the retardation factor caused by adsorption, batch adsorption tests were conducted at various concentrations. Test results were correlated with both Langmuir and Freundlich isotherms. The adsorption of the lead ion was applicable to the Langmuir isotherm and the adsorption of the cadmium ion was applicable to the Freundlich isotherm. In addition, based on experimental results, the migration characteristics of heavy metals through the bed of fly ash and bentonite mixture were investigated using the PHREEQC, a reactive transport model, under the real conditions of the landfill liner.

  • PDF

Experimental and Theoretical Studies on the Dynamic Characteristics During Speed Down of Inverter Heat Pump

  • Hwang, Yoon-Jei;Kim, Ho-Young
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.1
    • /
    • pp.29-39
    • /
    • 2000
  • A series of tests were performed to verify the transient characteristics of heat pump in heating and cooling mode when operating speed was varied over the 30 to 102Hz. One of the major issues that has not been addressed so far is transient characteristics during speed modulation. The model for cycle simulation has been developed to predict the cycle performance under conditions of decreasing drive frequency and the results of the theoretical study were compared with the results of the experimental study. The simulated results were in good agreement with the experimental result within 10%. The transient cycle migration of the liquid state refrigerant causes significant dynamic change in system. Thus, the migration of refrigerant was the most important factor whenever do experimental results analysis or develop simulation model.

  • PDF

Effects of weather change, human disturbance and interspecific competition on life-history and migration of wintering Red-crowned cranes (기후변화와 인간의 방해 및 종간경쟁이 두루미 월동생태와 이동에 미치는 영향)

  • Hong, Mi-Jin;Lee, Who-Seung;Yoo, Jeong-Chil
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.5
    • /
    • pp.681-692
    • /
    • 2015
  • It is well documented that physiological and nutritional condition of wintering birds is strongly related to migration success to breeding sites, and also breeding success. However, how abiotic factors during winter affect the migration and breeding successes still remains unclear. Thus, this study developed a dynamic-state-dependent model for wintering life-history to identify the potential impact on the life-history, success to breeding site and breeding success of wintering birds, which are related to temperature fluctuation, interspecific competition and human disturbance at the wintering sites. To find the best-fit-model, we referred to the existing research data on wintering ecology of Red-crowned cranes (Grus japonensis) in Cheolwon, Korea, which is well documented as a long-term wintering study. Our model predicted that the higher temperature fluctuation and a higher rate of human disturbance are negatively related to migration success to breeding sites and their fitness, ultimately breeding success via changing of proportion in resource allocation (for e. g., lower energy compensation or higher level of stress accumulation). Particularly, the rate of body mass compensation after arrival at wintering sites may be accelerated when there are less temperature fluctuations and a lower rate of human disturbance. In addition, the rate of interspecific competition sharing the wintering foraging sites is negatively related to the rate of body mass compensation. Consequently, we discussed the conservation strategies of wintering birds based on the outcomes of the model.

Study on Radionuclide Migration Modelling for a Single Fracture in Geologic Medium : Characteristics of Hydrodynamic Dispersion Diffusion Model and Channeling Dispersion Diffusion Model (단일균열 핵종이동모델에 관한 연구 -수리분산확산모델과 국부통로확산모델의 특성-)

  • Keum, D.K.;Cho, W.J.;Hahn, P.S.;Park, H.H.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.401-410
    • /
    • 1994
  • Validation study of two radionuclide migration models for single fracture developed in geologic medium the hydrodynamic dispersion diffusion model(HDDM) and the channeling dispersion diffusion model(CDDM), was studied by migration experiment of tracers through an artificial granite fracture on the labolatory scale. The tracers used were Uranine and Sodium lignosulfonate know as nonsorbing material. The flow rate ranged 0.4 to 1.5 cc/min. Related parameters for the models were estimated by optimization technique. Theoretical breakthrough curves with experimental data were compared. In the experiment, it was deduced that the surface sorption for both tracers did not play an important role while the diffusion of Uranine into the rock matrix turned out to be an important mass transfer mechanism. The parameter characterizing the rock matrix diffusion of each model agreed well The simulated result showed that the amount of flow rate could not tell the CDDM from the HDDM quantitatively. On the other hand, the variation of fracture length gave influence on the two models in a different degree. The dispersivity of breakthrough curve of the CDDM was more amplified than that of the CDDM when the fracture length was increased. A good agreement between the models and experimental data gave a confirmation that both models were very useful in predicting the migration system through a single fracture.

  • PDF

Development of Three-dimensional Chemotaxis Model for a Single Crawling Cell, Considering the Interaction between the Cell and Substrate (세포와 흡착면간의 영향을 고려한 흡착형 세포의 3 차원 동적 해석 모델 개발)

  • Song, Ji-Hwan;Kim, Dong-Choul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1355-1360
    • /
    • 2011
  • The interaction between the cell and the substrate is the most prominent feature affecting the migration of a crawling cell. This paper proposes a three-dimensional dynamic model using the diffuse interface description that reveals the effects of the interaction between a single crawling cell and the substrate during chemotactic migration. To illustrate the effects of interaction between the cell and the substrate, we consider the interfacial energy between the coexistent materials. Multiple mechanisms including the interface energy, chemotaxis effect, and diffusion, are addressed by employing a diffuse interface model.

Efficient Idle Virtual Machine Management for Heterogeneous Cloud using Common Deployment Model

  • Saravanakumar, C.;Arun, C.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1501-1518
    • /
    • 2016
  • This paper presents an effective management of VM (Virtual Machine) for heterogeneous cloud using Common Deployment Model (CDM) brokering mechanism. The effective utilization of VM is achieved by means of task scheduling with VM placement technique. The placements of VM for the physical machine are analyzed with respect to execution time of the task. The idle time of the VMis utilized productively in order to improve the performance. The VMs are also scheduled to maintain the state of the current VM after the task completion. CDM based algorithm maintains two directories namely Active Directory (AD) and Passive Directory (PD). These directories maintain VM with proper configuration mapping of the physical machines to perform two operations namely VM migration and VM roll back. VM migration operation is performed from AD to PD whereas VM roll back operation is performed from PD to AD. The main objectives of the proposed algorithm is to manage the VM's idle time effectively and to maximize the utilization of resources at the data center. The VM placement and VM scheduling algorithms are analyzed in various dimensions of the cloud and the results are compared with iCanCloud model.

Development of a three-dimensional dynamic model for chemotaxis

  • Song, Jihwan;Kim, Dongchoul
    • Interaction and multiscale mechanics
    • /
    • v.4 no.2
    • /
    • pp.165-171
    • /
    • 2011
  • In this study, we proposed a three-dimensional dynamic model under the diffuse interface description for the single crawling cell. From the developed model, we described the clear evolution processes for crawling neutrophil and assessed the reliable quantitative chemotactic property, which confirmed the high possibility of adequate predictions. To establish the system considering of multiple mechanisms such as, diffusion, chemotaxis, and interaction with surface, a diffuse interface model is employed.