• Title/Summary/Keyword: Mie scattering

Search Result 116, Processing Time 0.025 seconds

Analysis of the Scattering Coefficients of Microspheres Using Spectroscopic Optical Coherence Tomography

  • Song, Woosub;Lee, Seung Seok;Lee, Byeong-il;Choi, Eun Seo
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.278-288
    • /
    • 2021
  • We propose a characterization method for the scattering property of microspheres using spectroscopic optical coherence tomography (OCT). To prove the effectiveness of the proposed method, we prepare solutions of different concentrations using microspheres ranging from 28 to 2300 nm in diameter. Time-frequency analysis is performed on the measured interference spectrum of each solution, and the resulting spectroscopic information is converted into histograms for centroid wavelengths. The histograms present a very sensitive response to changes in the concentration and size of microspheres. We classify them into three categories according to their characteristics. When the histogram of each category is replaced with the corresponding calculated value of the scattering coefficient, each category is mapped to a different scattering-coefficient region. It is expected that the proposed method could be used to investigate the optical characteristics of a biological sample from OCT images, which would be helpful for optical diagnostic and therapeutic applications.

Study on Spray Visualization and Atomization Characteristics of Air-assist Type Injector for Scramjet Engine (스크램제트 엔진용 공기 보조형 인젝터의 분무 가시화 및 미립화 특성에 관한 연구)

  • Lee, Jinhee;Lee, Sanghoon;Lee, Kyungjae;Kim, Jaiho;Yang, Sooseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.88-96
    • /
    • 2017
  • As a part of the development procedures of scramjet engine with a regenerative cooling system, this experiment was performed using air-assist type injectors for scramjet engine. Two types of injectors were used in this experiment with the 90 and 60 degrees of the injection angle to the main flow. Mie-scattering was used for spray visualization and PDPA was used for the measurement of the atomization characteristics. It was found that increasing the pressure of supplied gas and the distance from nozzle tip led to the enhancement atomization characteristics and the injector with 60 degrees injection angle has better atomization characteristics than 90 degrees injector.

An Experimental Analysis on the Spray Structure of Multi-component Fuels Using Magnification Photograph and Mie Scattering Images (확대촬영법 및 Mie 산란광법을 이용한 다성분연료의 분무구조에 관한 실험적 해명)

  • Myong, Kwang-Jae;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.707-716
    • /
    • 2008
  • The objective of this study was to analyze the effect of mixed fuel composition and mass fraction on spray inner structure in evaporating transient spray under the variant ambient conditions. Spray structure and spatial distribution of liquid phase concentration were investigated using a thin laser sheet illumination technique on the three component mixed fuels. A pulsed Nd:YAG laser was used as a light source. The experiments were conducted in a constant volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector. Used fuel contains i-octane($C_8H_{18}$), n-dodecane($C_{12}H_{26}$) and n-hexadecane($C_{16}H_{34}$) that were selected as low-, middle- and high-boiling point fuel, respectively. Experimental conditions are 42 MPa, 72 MPa and 112 MPa in injection pressure, $5\;kg/m^3$, $15kg/m^3$ and $30kg/m^3$ in ambient gas density, 300 K, 500 K, 600 K and 700 K in ambient gas temperature, 300 K and 368 K in fuel temperature and different fuel mass fraction. Experimental results indicated that the multi-component fuels made two phase region mixed vapor and liquid so that it would are helpful to improve combustion, for the fuels of high boiling point component could accelerate evaporation very much according as low boiling point fuel was added to high boiling point fuel.

Analysis of Soot Particle Morphology Using Rayleigh Debye Gans Scattering Theory (RDG 산란 이론을 이용한 그을음 탄소 입자의 형상 분석)

  • Seo, Hyoungseock;Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.641-646
    • /
    • 2016
  • Soot particles generated by fossil fuel combustion normally have fractal morphology with aggregates consisting of small spherical particles. Thus, Rayleigh or Mie elastic light scattering theory is not feasible for determining the fractal properties of soot aggregates. This paper describes a detailed process for applying Rayleigh-Debye Gans (RDG) scattering theory to effectively extract the morphological properties of any nano-scale particles. The fractal geometry of soot aggregates produced from an isooctane diffusion flame was observed using ex situ transmission electron microscopy (TEM) after thermophoretic sampling. RDG scattering theory was then used to analyze their fractal morphology, and various properties were calculated, such as the diameter of individual soot particles, number density, and volume fraction. The results show indiscernible changes during the soot growth process, but a distinct decreasing trend was observed in the soot oxidation process. The fractal dimension of the soot aggregates was determined to be around 1.82, which is in good agreement with that produced for other types of fuel. Thus, it can be concluded that the value of the fractal dimension is independent of the fuel type.

Response of laser light active scattering aerosol spectrometer to light-absorbing aerosol particulates (광흡수성 분체입자에 대한 레이저산란광 분체입도측정기의 반응 특성)

  • Jeung, I. S.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.55-63
    • /
    • 1984
  • Berglund-Liu 진동방식 단분산 분체입자 발생기(Berglund-Liu vibrating orifice monodisperse aerosol generator)에 의하여 제작한 단분산 광흡수성 표준분체입자를 사용하여 레이저 산란광 분체입도 측정기 (Knollenberg active scattering aerosol spectrometer)의 반응특성을 조사하 였다. 실험결과, 기기의 반응특성은 Mie 산란이론에 의하여 계산한 이론치와 매우 잘 일치하며 특히 광흡수성 분체입자는 광통과성 분체입자가 다의적인 특성을 나타내는 것에 반하여 거의 단조증가하는 일의적인 특성을 가지고 있으며 광흡수성 분체입자의 반응특성이 제작자의 교정 치에 가까운 결과를 나타내었다.

  • PDF

Application of Fluorescence/Scattering Technique to the Measurement of Spray Droplet Size in GDI Injector (직접 분사식 가솔린 인젝터 분무의 입경 측정에 형광/산란광법의 적용)

  • Kwak, Soo-Min;Ryu, Kyeong-Hun;Choi, Bong-Seok;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.353-358
    • /
    • 2000
  • To achieve the requirement for high fuel economy and low emissions, the research for GDI engines is recently very brisk in the whole world. This study was performed to measure distribution of average particle size in non-evaporating spray. The 2-D fluorescence/scattering images of fuel spray were captured simultaneously by visualization system composed of a laser sheet, a doubling prism, optical filters, and an ICCD camera. Using the ratio of the two light intensities, particle size distribution was obtained. The SMD measured by fluorescence/scattering technique was compared with it obtained by PDA. The experimental results show that the spray structure of GDI injector and temporal SMD distribution.

  • PDF

Simulation study on the optical structures for improving the outcoupling efficiency of organic light-emitting diodes

  • Jeong, Su Seong;Ko, Jae-Hyeon
    • Journal of Information Display
    • /
    • v.13 no.4
    • /
    • pp.139-143
    • /
    • 2012
  • In this study, optical simulation was used to compare three optical structures that could be applied to the typical organic light-emitting diode to increase the outcoupling efficiency. These were spherical scattering particles (treated as Mie scatterers) embedded in the glass substrate, microlenses formed on the glass substrate, and a diffusing layer (DL) with a Gaussian scattering distribution function inserted between the indium tin oxide (ITO) and the glass substrate. It was found that the application of microlens array and that of scattering particles in the glass substrate exhibited similar enhancements in the outcoupling efficiency when the density and the refractive index of the scattering particles were optimized. The DL located at the interface between the glass and the ITO further enhanced the efficiency because it could further extract the trapped light in the waveguide mode. The appropriate combination of these three structures increased the outcoupling efficiency to about 42%, which is much greater than the typical values of 15-20% when there is no optical structure for light extraction.

The Spray Measurements of Gasoline, M85, E85, and LPG by a GDI Injector in a Constant Volume Chamber (정적챔버에서 GDI용 연료분사기의 가솔린, M85, E85 및 LPG 분무 계측)

  • Kim, S.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.5-10
    • /
    • 2012
  • Spray structures and penetration lengths of Gasoline, M85, E85, and LPG by a GDI 6-hole fuel injector were examined in a constant volume chamber. The chamber pressure was controlled at 0.1 MPa and 0.9 MPa. The effects of fuel injection pressure and chamber pressure on the spray structures and penetration lengths were investigated using the 2-dimensional Mie scattering technique. It was found that the sprays developed linearly till ASOI 1.7ms after start of injection and vortices were happened around jets on the way of spray development. And the high chamber pressure, 0.9 MPa kept the fuel sprays development down and the penetration length was reduced to about 55% compared with that of 0.1 MPa. In additions high pressure of fuel injection, 12 MPa increased the spray penetration length more about 7~10% than that of 7 MPa.

The Effect of LII Interference on the Measurement of PAH's LIF Signals using Ar-Ion Laser (아르곤이온 레이저를 이용한 확산화염 내 PAH의 LIF 신호 측정에 LII 신호가 미치는 영향)

  • Ahn, Taekook;Bae, Seungman;Lee, Wonnam;Park, Sunho
    • Journal of the Korean Society of Combustion
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • The effect of LII interference on the measurement of LIF signals from PAH in a diffusion flame has been investigated. Argon-ion laser at 488 nm was vertically or horizontally polarized, and irradiated to the centerline of the flame at varying flame height. Signals from PAH-rich regions measured at 515 nm were mostly LIF signals, however, signals from soot-rich regions were determined to be mixed with Mie scattering signals and/or LII signals. Signals measured 1 mm above the excitation height were mostly LII signals from soot particles. The results show that a quantitative determination of the LIF's contribution to the measured signals would be difficult as long as the experimental setup described here is used for the regions where PAHs and soot particles exist together.

Comparison of Liquid- and Vapor-Phase Spray Characteristics of E85 Fuel using Schlieren Visualization Technique (쉴리렌 가시화 기법을 이용한 E85 연료의 액상 및 기상 분무 비교)

  • Park, Suhan;Chang, Mengzhao
    • Journal of Institute of Convergence Technology
    • /
    • v.8 no.1
    • /
    • pp.9-13
    • /
    • 2018
  • The purpose of this study is to investigate the liquid- and vapor-phase spray characteristics, such as spray tip penetration and spray angle using gasoline direct injection (GDI) injector with multi-hole. The vapor-phase spray was captured by the Schlieren visualization system, which consists of high-speed camera, LED lamp, concave mirrors, and knife-edge. The liquid-phase spray was visualized by Mie-scattering techniques. Both spray images of vapor- and liquid-phase were visualized under 373 K of ambient temperature, 1 bar of ambient pressure, and 100/200 bar of injection pressure. The energizing duration was fixed at 1.5 ms. From the analysis of experimental results, it revealed that the increased injection pressure induced an early vaporization due to the improvement of droplet atomization. The spray tip penetration and spray angle in vapor-phase were higher than those in liquid-phase. The difference in the spray tip penetration between vapor- and liquid-spray gradually increased with the time elapsed after the injection. Even with the spray angle characteristics, it was found that the difference between the spray angle of liquid and vapor spray gradually grew after they entered steady-state conditions.