• Title/Summary/Keyword: Midway optical phase conjugator

Search Result 22, Processing Time 0.027 seconds

Optical Transmission Link with Dispersion Management near-by Midway Optical Phase Conjugator (Midway 광 위상 공액기 근처에서 분산 제어를 수행하는 광전송 링크)

  • Lee, Seong-Real
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.633-635
    • /
    • 2018
  • The compensation characteristics of the distorted WDM channels compensated for by dispersion management (DM) and optical phase conjugation in the long-haul (50 fiber spans ${\times}$ 80 km) transmission link with the randomly distributed single mode fiber (SMF) length and residual dispersion per spans (RDPS) are investigated as a function of the arrangement of SMF and dispersion compensating fiber (DCF) and the control position of net residual dispersion (NRD).

  • PDF

Efficient Dispersion-managed Link with Repeting Artificial Distribution of SMF Lengths and RDPS for Compensation of Distorted WDM Signal (왜곡된 WDM 신호의 보상을 위한 SMF 길이와 RDPS의 인위적 분포가 반복하는 분산 제어 링크)

  • Lee, Seong-Real;Hong, Seong-Hwa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.348-350
    • /
    • 2018
  • In this paper, dispersion-managed optimal link configuration with the repetitively artificial-distributed single mode fiber lengths and residual dispersion per span, in which optical phase conjugator placed at midway, is proposed. It is confirmed that the proposed optical link configuration is suitable for expanding transmission length capable to obtain the good performance.

  • PDF

Dispersion-managed Link with Growth/Decay Distribution of Accumulated Dispersion of Fiber Spans (중계 구간의 누적 분산이 지속적으로 증가/감소하는 분산 제어 링크)

  • Kim, Dae-Jung;Lee, Seong-Real
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.579-581
    • /
    • 2019
  • In this paper, dispersion-managed optimal link configuration with the growth/decay distribution of accumlative dispersion as the fiber span is increased, in which optical phase conjugator placed at midway, is proposed. It is confirmed that if net residual dispersion set to be -15 ps/nm or 15 ps/nm in the proposed optical link configuration, the best compensation of the distorted wavelength division multiplexed channels will be obtained.

  • PDF

Compensation for Distorted Signals by using Optimal Pump Light Power in WDM Systems with Non-midway Optical Phase Conjugator

  • Lee Seong-Real
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7A
    • /
    • pp.542-549
    • /
    • 2005
  • In this paper, the optimal pump light power of optical phase conjugator (OPC) and the compensation characteristics of distorted WDM channel signals are numerically investigated, when the OPC with highly-nonlinear dispersion shifted fiber (HNL-DSF) not be placed at the mid-way of total transmission length. The total dispersion of former half section and latter half section is assumed to be same each other in this approach. It is confirmed that, in WDM transmission systems with OPC deviated from the mid-way, the pump light power for best compensation must be flexible selected depending on the OPC position. This optimal pump light power is gradually increased as the OPC is gradually closer to the receiver. Consequently, it is possible to establish the compensation system independent on the OPC position by setting optimal pump light power connected with the OPC position.

Dispersion-Managed Links Formed of SMFs and DCFs with Irregular Dispersion Coefficients and Span Lengths

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.2
    • /
    • pp.67-71
    • /
    • 2018
  • The various techniques to compensate for the signal distortion due to the group velocity dispersion (GVD) and nonlinear Kerr effects of optical fibers in the optical links have been proposed in the literature. We propose a flexible dispersion-managed link configuration consisted of single-mode and dispersion-compensating fibers with irregular dispersion coefficients over all fiber spans, and an optical phase conjugator added midway along the optical links. By distributing the lengths of the single mode fibers, we achieve a flexible optical link. The simultaneous ascending and descending distribution of the single-mode fiber lengths before and after the optical phase conjugator, respectively, best compensates the distorted wavelength division multiplexed signals in the optical link with non-fixed coefficients. Our result is consistent with those of our previous work on fixed coefficients. Therefore, to improve the compensation at any magnitude of dispersion coefficient, we must artificially distribute the lengths of the single-mode fibers into a dispersion-managed link.

Dispersion-managed Link with the Repeated RDPS (RDPS가 반복하는 분산 제어 링크)

  • Lee, Seong-Real
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.582-584
    • /
    • 2019
  • In this paper, dispersion-managed optimal link configuration with the repetitive distribution of the pairs of residual dispersion per span, in which optical phase conjugator placed at midway, is proposed. It is confirmed that the proposed optical link configuration is better than the conventional dispersion-managed link for the performance improvement of wavelength division multiplexed channels.

  • PDF

Compensation of WDM Signal Distortion through Non-midway Optical Phase Conjugation and Dispersion Maps of Asymmetric Structure (Non-midway 광 위상 공액과 비대칭 구조의 분산 맵을 통한 WDM 신호의 왜곡 보상)

  • Seong-Real Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.855-860
    • /
    • 2023
  • Long-haul transmission of multiple transmission signals, such as wavelength division multiplexed (WDM), has became possible, because the signal distortion caused by chromatic dispersion and nonlinearity can be compensated by applying dispersion management, optical phase conjugation and combination of the two methods into the transmission link. The biggest obstacle to applying optical phase conjugation to an optical link is that the optical phase conjugator (OPC) must be located only in the middle of the entire transmission line. This paper shows that the location constraints of OPC can be overcome through the application of an asymmetric dispersion map. The location of the OPC considered in this paper exists between the 8th and 9th fiber spans out of a total of 48 fiber spans. Additionally, the dispersion map has an asymmetric cumulative dispersion profile with respect to the OPC. As a result of the simulation, it was confirmed that the distortion compensation effect of the WDM channel can be increased compared to the link to which the traditional dispersion map is applied, depending on the overall shape of the cumulative dispersion profile distribution of the proposed asymmetric dispersion map and the selection of the profile slope.

Pseudo-symmetrically Dispersion-Managed Optical Transmission Links with Midway OPC for Compensating for Distorted WDM Signals

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.228-234
    • /
    • 2015
  • The system performance improvement in dispersion managed (DM) links combined with optical phase conjugator (OPC) for compensating for optical signal distortion due to group velocity dispersion and nonlinear fiber effects has been reported. However, in DM link combined OPC, the equalities of the lengths of single-mode fibers (SMFs), the length of dispersion compensating fibers (DCFs), the dispersion coefficient of DCF, and the residual dispersion per span (RDPS) with respect to an OPC restrict a flexible link configuration. Thus, in this paper, we propose a flexible optical link configuration with inequalities of link parameters, the so-called "pseudo-symmetric configuration." Simulation results show that, in the restricted RDPS range of 450 ps/nm to 800 ps/nm, the improvement in the system performance of the proposed pseudo-symmetrically configured optical links is better than that of the asymmetrically configured optical links. Consequently, we confirmed that the proposed pseudo-symmetric configuration is effective and useful for implementing a reconfigurable long-haul wavelength-division multiplexing (WDM) network.

Decaying/Expanding Distribution of RDPS in the Half Section of a Dispersion-Managed Optical Link Combined with Mid-Span Spectral Inversion

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.4
    • /
    • pp.227-233
    • /
    • 2019
  • In long-haul optical communication system consisting of standard single-mode fiber spans and fiber amplifiers, such as the erbium-doped fiber amplifier, performance is deteriorated by signal distortion due to chromatic dispersion and nonlinearity of the fiber. A combination of dispersion management and optical phase conjugation is an effective technique to compensate for the distortion. In an optical link configured by this combination, a dispersion map mainly affects the compensation of the distorted optical signals. This paper proposes new dispersion maps configured by the decaying or expanding distribution of residual dispersion per span (RDPS) in a dispersion-managed link combined with a midway optical phase conjugator. The effect of the proposed dispersion maps on the compensation for distorted 24 channel × 40 Gbps wavelength-division multiplexed signals was assessed through numerical simulation. It was confirmed that all the proposed dispersion maps are most appropriate for the compensation and, furthermore, for the flexibility of link configuration than conventional links.

Dispersion-Managed Link with Different Numbers of Fiber Spans and Asymmetric Distribution of RDPS (중계 구간의 개수가 다르고 RDPS가 비대칭인 분산 제어 링크)

  • Hong, Sung-Hwa;Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.570-576
    • /
    • 2019
  • The configuration of dispersion-managed optical link with optical phase conjugator, which is placed at the non-midway of total transmission length, is proposed for implementing of the flexible optical network. The optical phase conjugator is located between the former half transmission section and the latter half transmission section, which are consisted of 6 fiber spans and 14 fiber spans respectively, and the averaged RDPS of each half transmission section are inconsistence. And, the artificial distribution of each fiber span's RDPS, which are gradually increased/decreased as the span numbers are increased, is adopted to compensate for the distorted wavelength division multiplexed channels. From the simulation results, it is confirmed that the compensation in dispersion-managed link configured by a special distribution pattern among 16 proposed patterns, in which the RDPS of each fiber spans are gradually decreased/increased in the former/latter half section with the small deviation, is suitable to compensate for the distorted wavelength division multiplexed channels.