• Title/Summary/Keyword: Microwave process

Search Result 542, Processing Time 0.026 seconds

Luminescence characterization of $YVO_4$: $Eu^{3+}$, $Bi^{3+}$ red phosphor by rapid microwave heating synthesis (급속 microwave 열처리 방법으로 합성한 $YVO_4$: $Eu^{3+}$, $Bi^{3+}$ 적색 형광체의 발광 특성)

  • Park, W.J.;Song, Y.H.;Moon, J.W.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.4
    • /
    • pp.169-173
    • /
    • 2008
  • $Eu^{3+}$ and $Bi^{3+}$ co-doped $YVO_4$ phosphors were produced by a microwave heating process. When the microwave heating method was synthesized,. the particle size was very small and the particles tended to agglomerate. However, as the heating time increased, the particle size increased and the agglomeration decreased. The emission spectrum exhibited a weak band for $^5D_0{\longrightarrow}^7F_1$ at 594.91 and 602.3 nm and strong sharp peaks at 616.7 and 620.0 nm due to the $^5D_0{\longrightarrow}^7F_2$ transition of $Eu^{3+}$. Microwave heating synthesis can provide a product without long time heating as well as good homogeneous distribution of activators.

Accuracy and Precision of Microwave Oven Digestion/Atomic Absorption Spectrophotometry for Analyzing Airborne Chromium Collected on MCE Filter in Plating Operation (도금공정 크롬시료 분석을 위한 Microwave Oven Digestion/Atomic Absorption Spectrophotometry 방법의 정확도 및 정밀도 평가)

  • Lee, Byung-Kyu;Lee, Ji-Tae;Shin, Yong-Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.1
    • /
    • pp.48-55
    • /
    • 2001
  • The purpose of this study was to evaluate the analytical accuracy and precision of microwave oven digestion/atomi absorption spectrophotometry (AAS) for analyzing airborne chromium collected on mixed cellulose ester membrane (M filter from the work environment, and to compare the accuracy and the precision with those of the National Institute for Occupational Safety and Health (NIOSH) Method #7024 hot plate digestion/AAS method. For this study, field air sample pairs were collected from a electroplating process, and spiked samples in a laboratory were prepared and using these samples. Two digestion methods were comp; and evaluated in terms of recovery rate and bias as indices of accuracy and coefficient of variation as a index of precision. The results and conclusions are as follows. In spiked samples, the accuracies (% mean recoveries) of hot plate/AAS and microwave oven/AAS method were 97.19%, 97.1%, respectively, and the precisions (pooled respectively, and the precisions (pooled coefficient of variance, $CV_{pooled}$) 6.93% and 3.88%, respectively. The biases of hot plate ani microwave oven methods were 4.56 - 14.7% and 2.22 - 7.42% respectively. There was no statistically significant difference between hot plate and microwave oven methods recovery rates of spiked samples (p>0,05). Also, no statistically significant difference was shown among the concentrations of air samples determined by two method (p>0.05). In conclusion, microwave oven/AAS method h excellent accuracy and precision, and advantages such as time-saving and simple procedure in comparison with the classical NIOSH method. Therefore, this method can be use widely to analyze airborne chromium collected on MCE filter from the work environments.

  • PDF

The Characteristics of Sour Gas Decomposition by Microwave (Microwave에 의한 산성가스 분해 특성)

  • Kim, Dong-Sik;Kim, Jae-Surl;Lee, Dong-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1027-1033
    • /
    • 1996
  • Under the Irradiation of the radiofrequency wave, the dipole materials vibrate as microwavic phase change. This causes friction between adjacent molecules and enables an unique charateristics of interior heating of the materials. When dipole gases are adsorbed inside of a solid radiofrequency wave absorber, the gases can be decomposed easily by the microwave energy. The decomposition of sour gases was successfully tested in this manner to develop a sour gas removal process from the combustion flue gas. The standard gas bearing NO and $SO_2$ was passed through and microwave was applied on the calcined char bed as the wave absorber and the gas adsorbent. It was found that more then 95% of NO and 70 % of $SO_2$ was decomposed to the environmentally clean elements during the passage through the 20 gram char bed under the microwave impingement. The surface area and the porosity of char increased because the oxygen radicals produced from decomposed gas attacked carbon in the char capillaries and formed $CO_2$. For a lower concentration of sour gas, general cases in the commercial combustion processes, almost complete decomposion is believed possible and this method is surely expected to be useful for the prevention of air pollutions.

  • PDF

A Study on the Desulfurization of Petroleum Cokes by Microwave Heating (마이크로웨이브 가열에 의한 석유 코크스의 탈황에 관한 연구)

  • Park, Min-Gyu;Kang, Tae-Won
    • Clean Technology
    • /
    • v.8 no.1
    • /
    • pp.11-17
    • /
    • 2002
  • Petcokes is the final product obtained from a refinery process. This petcokes includes high percentage of inorganic and sulfur compounds. Currently, the petcokes produced from domestic refinery plants include more than 6% of sulfur. To use petcokes as valuable raw materials, the weight percentage of sulfur must be lower than 2% of sulfur. Solvent extraction, thermal desulfurization, and hydro-desulfurization have been used to remove the sulfur. In this study, we attempted new approach to remove the sulfur introducing microwave energy. Microwave increase the reaction rates by providing the fast heating and disconnecting the bonding structure of the molecules. The experiments of microwave thermal desulfurization and microwave plus hydrogen gas were carried out to remove the sulfur. We obtained 68.3% of sulfur removal rate with the 2 hours of reaction time and 1835 W of microwave powder. In the experiment of microwave with hydrogen gas, we obtained 86.4% of sulfur removal rate with the 1.5 hours of reaction time and 1835 W of microwave power. If we increase reaction time or decrease the particle size of petcokes, we expect more than 90% of sulfur removal.

  • PDF

Production of Chitosan from Crabshells using Microwave (마이크로파를 이용한 게껍질로부터 키틴/키토산 분리제조반응)

  • Choi, Guang Jin
    • Clean Technology
    • /
    • v.7 no.4
    • /
    • pp.281-290
    • /
    • 2001
  • A microwave-assisted process to prepare chitosan from natural crabshells has been investigated. This study was primarily to examine the effectiveness of microwave as clean energy for chitosan preparation. Several human-edible organic acids were used as clean catalyst, possibly to improve the current HCl-based hydrolysis process of polymeric chitosan. The microwave was found to be effective substantially in reducing the reaction time. Nonetheless, no beneficial effect of microwave other than time, such as the chemical selectivity, was hardly observed. The organic acids were very effective in the hydrolysis reaction of polymeric chitosan. Their catalytic behavior was greatly improved especially when reactions were performed under pressure. In the case of autoclave reaction for 60 minutes at $120^{\circ}C$, viscous solution of polymeric chitosan (mol. wt. > 300,000) turned into thin solutions of water-like viscosity, which means chitosan molecules were decomposed to very small-sized oligomers.

  • PDF

Synthesis of Metal Doped ZnO Nanoclusters by Microwave Assisted Polyol Process (마이크로웨이브 폴리올 공정에서 금속 도핑 산화아연 나노클러스터의 합성)

  • Kwon, Oh-San;Kang, Kuk-Hyoun;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.525-533
    • /
    • 2014
  • ZnO has attracted much attention such as photocatalysts, sensors, piezoelectricity and etc. At present, an economical and rapid synthesis route based on the efficient microwave polyol process is used to synthesized metal-doped ZnO nanoclusters. Diethylene glycol has a property of high polarizability, and is an excellent microwave absorbing agent, thus leading to a high heating rate and a significantly shorter reaction time. In this study, metal-doped ZnO nanoclusters are obtained with different seed volumes, when zinc acetate dihydrate is used as a precursor, and metal acetate hydrate is used as a doped-metal and diethylene glycol is used as a solvent. The obtained metal-doped ZnO nanoclusters were characterized by FE-SEM, XRD, Raman and PSA.

Design of a Microwave Radiometer Receiver for Soil Moisture monitoring (토양 수분 모니터링용 마이크로파 라디오미터 수신기 설계)

  • Son, Hong-Min;Park, Hong-Kyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.173-180
    • /
    • 2014
  • The development process of a L-Band microwave radiometer for remote sensing of soil-moisture are described in this paper. Achieving the development aim of the measurement accuracy within 2% for soil moisture content of 0~50%, the requirements and specifications of the microwave radiometer and its receiver are drawn. The receiver with high gain, high sensitivity is designed and implemented to satisfy these requirements and specifications. The receiver has the bandwidth of 40 MHz, the system gain of 50 dB and the sensitivity of average value 0.19 K, maximum value 0.313K at 1390 MHz.

Electrical Characteristics of Carbon Nanotubes by Plasma and Microwave Surface Treatments

  • Cho, Sang-Jin;Shrestha, Shankar Prasad;Lee, Soon-Bo;Boo, Jin-Hyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.905-907
    • /
    • 2014
  • The plasma and microwave surface treatments of carbon nanotubes that loaded on plastic substrates were carried out with expecting a change of carbon nanotube dispersion by increasing treatment time. The microwave treatment process was undergone by commercial microwave oven (800 W). The electrical property was measured by hall measurement and resistance was increased by increasing $O_2$ flow rate of plasma, suggesting an improvement of carbon nanotube dispersion and a possibility of controlling the resistances of carbon nanotubes by plasma surface treatment. The resistance was increased in both polyethylene terephthalate and polyimide substrates by increasing $O_2$ flow rate. Resistance changes only slightly with different $O_2$ flow treatment in measure rho for all polyimide samples. Sheet resistance is lowest in polyimide substrate not due to high carbon nanotube loading but due to tendency to remain in elongated structure. $O_2$ or $N_2$ plasma treatments on both polyethylene terephthalate and polyimide substrates lead to increase in sheet resistance.

A Preliminary Study of Patchouli Oil Extraction by Microwave Air-Hydrodistillation Method

  • Kusuma, Heri Septya;Altway, Ali;Mahfud, Mahfud
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.510-513
    • /
    • 2017
  • Patchouli oil extraction in general is still using conventional methods that require a long time of extraction. It is therefore necessary to develop extraction methods to obtain patchouli oil with optimum yield and quality. One of the new methods, which has been successfully developed, is microwave hydrodistillation (MHD). In addition to optimizing the extraction process of patchouli oil, this study also used microwave air-hydrodistillation (MAHD). Based on the research results, extraction using MAHD method can produce higher yield of patchouli oil when compared using MHD method. Also, based on the results of the analysis by GC-MS, extraction using MAHD method can produce quality of patchouli oil that is almost the same when compared using MHD method. This is supported by the results of the analysis by GC-MS, which showed that the content of patchouli alcohol is the main component of patchouli oil, and is almost the same for patchouli oil extracted using MHD method (26.32%) and MAHD method (25.23%).

A Review of Microwave-assisted Technology for Biodiesel Production (마이크로파를 이용한 바이오디젤 전환 기술 동향 분석)

  • PARK, JO YONG;JEON, CHEOL-HWAN;KIM, JAE-KON;PARK, CHEON-KYU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.584-599
    • /
    • 2017
  • Biodiesel is renewable, eco-friendly, clean burning diesel replacement that is consisted of short chain alkyl ester. Biodiesel is derived from the transesterification of vegetables oils or animal fats with alcohol. The process has some technical problems that must be resolved to reduce the high operation cost. Eco-friendly physical technologies by using microwave have successfully improved the transesterification for biodiesel production. This paper attempts to extensively review microwave-assisted technology for biodiesel production. Additionally, different types of catalyst for biodiesel production have been summarized. It is concluded that the microwave-assisted technique improves the reaction rate significantly in comparison with conventional methods. Therefore it can be a suitable method of reducing the reaction time and can also decreases the cost of biodiesel production.